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Introduction
Multiple attenuation plays an important step in the pre-
processing of seismic data, and can directly affect the quality 
of the seismic image. Generally, model-based multiple attenu-
ation involves two steps: firstly, the multiples are predicted 
and secondly, the predicted multiples are removed from the 
seismic data leaving the primary reflections. Considerable 
effort has been devoted to the prediction of multiples in 
the last two decades. Surface-Related Multiple Elimination 
(SRME) is used routinely in the industry to eliminate long-
period multiples. Short-period multiples generated from the 
shallow seafloor and internal multiples generated by subsur-
face interfaces of high impedance contrast have also received 
attention in the areas of multiple modelling (Hargreaves, 
2006; Hung et al., 2010; Wang et al., 2011; Wang et al., 
2012; Yang and Hung, 2012).

As well as multiple prediction, an effective strategy for 
separating multiples from primaries is equally important. 
One of the most widely accepted separation strategies 
is the L2-norm based least-squares separation method 
(LS) (Verschuur and Berkhout, 1997). This method allows 
for a certain degree of inaccuracy in the prediction of 
multiples, including traveltime, amplitude and spectrum 
errors. However, a compromise has to be made between the 
preservation of primaries and the attenuation of multiples, 
especially in places where primary and multiple events cross 

Abstract
In this paper, we propose an adaptive scheme for primary-multiple separation whereby the multiples are first estimated from 
the seismic data and then removed using the curvelet transform. Because of the sparseness of seismic data in the curvelet 
domain, the primary-multiple separation problem is formulated by incorporating L1- and L2-norms, based on the frame-
work of the Bayesian Probability Maximization theory. An iterative soft-thresholding method is used for solving the opti-
mization problem. Prior to removal, the predicted multiples are preconditioned to match the actual multiples in the seismic 
data by least-squares matched filtering. We show that such an adaptive implementation is more robust and has a superior 
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To improve the effectiveness of primary-multiple separation for complex data, we develop a frequency-regularized adap-
tive curvelet domain separation approach. The method is optimized for different frequencies to improve attenuation in the 
presence of noise and in areas where multiple models are less accurate (e.g. narrowing of frequency bandwidth due to the 
convolution process in SRME). Accordingly, this extension provides more flexibility and leads to higher separation fidelity 
than its original form. We demonstrate the application of our approach on synthetic and field data. The results obtained from 
our approaches show significant improvement over those obtained from conventional least-squares methods.

over one another or overlap. Meanwhile, different multiples 
have different characteristics in terms of their strength and 
multiple period. Internal multiples tend to have relatively 
low amplitude and shorter multiple period in comparison 
with deepwater surface-related multiples (Wang et al., 2012). 
Hence, it is beneficial to have a separation tool that can 
be optimized for handling various types of multiples. For 
this reason, interest in curvelet-based separation methods 
has increased recently. These methods have the advantage 
of minimizing the damage to primary events due to the 
compact nature of the curvelet transform of seismic data 
(Herrmann et al., 2008). The various curvelet domain 
separation approaches that have been developed so far can 
be categorized into non-adaptive and adaptive implementa-
tions. On the one hand, non-adaptive implementations may 
encounter numerical divergence if predicted multiples deviate 
from multiples in the data (Herrmann et al., 2007; Saab et 
al., 2007); conversely, current adaptive implementations are 
more tolerant to deviation of predicted multiple models from 
actual multiples. However, existing adaptive approaches 
are either only correct for limited misalignment between 
predicted and actual multiples, or are affected by high com-
putational cost due to the use of curvelet matched filtering 
(Herrmann et al., 2008; Neelamani et al., 2010).

In this paper, we present our adaptive approaches for cur-
velet domain primary-multiple separation. Our approaches 
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needle-like curvelets form a suitable and natural basis for 
representing seismic data. This makes events that are widely 
spread out in the spatiotemporal domain very compact in 
the curvelet domain with a few coefficients. This leads to 
the sparseness of seismic data in the curvelet domain. There 
exists a way to exploit this sparsity for separating multiples 
from primaries by using Bayesian Probability Maximization 
(BPM) (Saab et al., 2007). The probability of predicted pri-
mary and multiple can be written as:
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where P(*) denotes the probability of the variables in the 
brackets; ‘|’ denotes the condition sign, and the variables on 
its right are conditions.  and  are the predicted primary 
and multiples, and D and M are the known input data and 
multiple model. BPM yields the maximization of the joint 
probability of  and  for given D and M, i.e., ( ), | ,P P M D M˜ ˜ . 
The conventional implementation of BPM is equivalent to the 
LS method. This is because the prior probability distribution 
of data and model is preset to Gaussian; and by solving BPM, 
it extracts the power indices of the distribution function to for-
mulate a quadratic summation form. In the curvelet domain, 
the L1-norm was introduced in the optimization problem 
since the distribution of the sparse coefficients is asymp-
totically closer to a Laplacian than to a Gaussian function. An 
iterative soft-thresholding algorithm was applied to solve this 
optimization problem (Daubechies et al., 2004).

In this paper, noting that the convergence of the iterative 
solver used by Saab et al. (2007) relies on an initial estimate 
of the predicted multiples that is sufficiently close to the 
actual multiples in the data, we design the least-squares 
matching filtering in the optimization process to bring the 
amplitude, traveltime and spectrum of the predicted model 

aim to improve the robustness and fidelity of current imple-
mentations of curvelet domain primary-multiple separation, 
and overcome the difficulties that are not fully handled by 
LS methods. In the following section, we first introduce the 
concept and the characteristics of the curvelet transform, 
and its application in primary-multiple separation. We then 
propose the theoretical framework and the primary-multiple 
separation workflow. In the following sections, we demon-
strate the proposed approaches by testing on synthetic and 
field examples. Finally, we summarize and recommend these 
approaches for addressing the primary-multiple separation 
problem in the future.

Framework of curvelet domain separation
Curvelet domain separation for removing multiples from 
noisy seismic data involves transforming seismic data into 
the curvelet domain and a process for simultaneously sepa-
rating multiples and primaries in the curvelet domain. The 
curvelet transform is a multi-scale and multi-dimensional 
transform (Candès et al., 2006), which can be written as:
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where  is the curvelet coefficient indexed by its 
frequency band j, dip l and time-space displacement , and 
D(t,x) is the 2D seismic sample at time t and position x; 

, ,
( , )

j k l
t xϕ  is the curvelet basis. Both  and l increase in dyadic 

order for every other j, hence the term ‘multi-scale’. In con-
trast to the time-space or frequency basis, a curvelet is local-
ized in both frequency and time-space, as shown in Figure 1 
(a-b). By varying its indices, the scale, the dip and the spatial 
location of the curvelets will change accordingly (Figure  1 
(c-f)). In seismic data, most events are either linear or curved 
in shape within a small spatiotemporal window; hence the 

Figure  1 (a) Curvelet tiling in the frequency 
domain; the red and blue arrows denote the 
ascending direction of index j and l, respectively. 
(b) the time-space presentation of the curvelet, 
annotated with an orange colour in (a) and 
vanishing k1 and k2; (c-f) the curvelets in time-
space domain with larger values of j, l, k1 and k2, 
respectively.
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in the predicted model caused by convolution in SRME) is 
frequency-dependent. Since the curvelet transform naturally 
partitions data into different frequency bands, it is feasible 
to manipulate the curvelets in each frequency band indepen-
dently. We therefore propose a new approach, referred to as 
Frequency-regularized Adaptive Curvelet Domain Separation 
(FrACDS). With FrACDS, the objective function of the 
optimization problem F (Pc, Mc) can now be recast as:

( ) ( ), ,c c j c c
j

F P M f P M= ∑  (4)

where fj (Pc, Mc) holds the same expression as Eq. (3) except 
that the controlling parameters depend on scale j. The optimi-
zation parameters for different scales are determined by the 
mismatch of the multiple models from the actual multiples 
within this scale. The flowchart of the overall process is shown 
in Figure  2. FrACDS provides more flexibility to effectively 
separate primaries and multiples in the presence of model 
inaccuracy and noise contamination for each frequency band.

Synthetic and field data examples
Two simple synthetic examples, shown in Figure 3, were first 
tested to assess the performance of our proposed approaches. 
Without loss of generality, we designed the multiple event to 
be linear and curved in the respective examples (Figure 3 (a2) 
and (b2)), and the multiple events cross over the horizontal 
primary events (Figure  3 (a1) and (b1)). To simulate the 
practical situation, a moderate mismatch of the frequency 
spectra and the dips between the multiple models and actual 
multiples presented in the data were included. The conven-
tional LS approach leaves residual multiples at the crossings, 
as annotated by blue arrows in Figure 3 (a3) and (b3). The 
wavelet of the primary is distorted after applying LS for 
primary-multiple separation. The difficulty is caused by the 
crossing of two multiple events and one primary event in 
example (a) and the overlapping of the multiple and primary 
in example (b), and by the mismatch of dip and wavelet 
between the models and the multiples. The multiples in 
example (a) was dramatically cleaned up by a non-adaptive 
curvelet domain separation method, but the apparent rem-
nant of the steeper multiple event is still observable (Figure 3 
(a4)). This is due to different degrees of mismatch between 
the two modelled and the actual multiple events. In contrast, 
they are more cleanly removed with minimal damage to the 

closer to those of the actual multiples. Such preconditioning 
of the model is likely to make the initial solution fall into the 
convergence range of the optimization solution. In contrast 
to the standard LS method that often makes a compromise 
between primary preservation and multiple attenuation, 
preconditioning the multiple model minimizes damage to 
the primary events, while matching the predicted multiples 
to the actual multiples in the data. Our implementation is to 
replace the original predicted model 'M  in Saab’s equation 
by its adapted version by applying the matching filter L̂Sf  to  

'M , as shown in Eq. (3.1), where. L̂Sf  is designed by Eq. (3.2) 
prior to solving the optimization problem Eq. (3.1).

f P M P M= +( ) {
1 21, 1,

,  min  ˆ ˆ
c c c cw w

 + + −* '        
2

1

2
   ˆ    c LSC M f M−+ − ( ) }21

2c cC P M Dη −  (3.1)

( ) 2
  min * '        L̂S LSg f D f M= −  (3.2)

In Eq. (3.1), Pc and Mc denote the primaries and multiples 
in the curvelet domain; D and 'M  are the data and the pre-
dicted multiple model in the time-space domain, respectively 
C denotes the forward curvelet transform and C-1 the inverse 
curvelet transform. Subscripts ‘1, w1’ and ‘1, w2’ denote the 
weighted L1 norms, with weights w1 and w2 being propor-
tional to the curvelet coefficients of the initial estimation 
of the model ( )*ˆ 'LSC f M  and the primary ( )*ˆ 'LSC D f M− ,  
respectively; subscript ‘2’ denotes the L2-norm. Weights 
w1and w2 in the terms of L1-norm penalize the orthogonal-
ity of primaries and multiples in their curvelet domain (Saab 
et al., 2007). Parameter η is inversely proportional to the 
estimated overall noise level. For solving equation (3), the 
aforementioned iterative soft-thresholding algorithm can 
still be applied. We term this implementation as the Adaptive 
Curvelet Domain Separation (ACDS) approach.

One of the advantages of decomposing seismic data in 
the curvelet domain is that the basic functions have differ-
ent frequency content. We can make use of this feature by 
extending ACDS to be optimized for different frequency 
bands. Applying the same parameters across all frequencies 
in ACDS may not be effective for all types of complex 
data since the level of noise and signal may vary across 
frequencies, and the degree of discrepancy between the 
predicted and actual multiples (e.g. narrowing of bandwidth 

Figure 2 Flowchart of ACDS and FrACDS. The 
‘Frequency-regularization’ step in the dashed box
is only applicable to FrACDS.
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effectively remove multiple-related curvelet coefficients in 
the corresponding frequency components. Consequently, the 
separation results are improved by FrACDS with much less 
residual multiple energy than by LS and ACDS (Figure  3 
(a6)). The insets annotated by the blue circles highlight the 
difference between results generated by ACDS, (a5) and (b5), 
and FrACDS, (a6) and (b6). It is clear from these examples 
that FrACDS suppresses the high- and low-frequency multi-
ples in an optimal way. In addition, the damage to primary 
energy, especially in the primary-dominant frequency band, 
is minimized by FrACDS. It can be seen that FrACDS pro-
vides fidelity of primary-multiple separation in seismic data.

We tested the primary-multiple separation approaches 
on the 2004 BP 2D model shown in Figure 4. We applied LS 
and FrACDS to remove the multiples predicted by reverse 
time demigration (Billette and Brandsberg-Dahl, 2005; 
Zhang and Duan, 2012), and compared the reverse time 
migration (RTM) stacks. From the comparison, it is obvious 

primaries by ACDS (Figure 3 (a5)). This is because primary 
and multiple events at crossings are represented by different 
curvelet coefficients and the adaptation of the model brings 
the mismatch level closer between the two multiple events 
and their corresponding models. Moreover, for example (b), 
the non-adaptive approach cannot completely eliminate the 
multiple, which is affected by the discrepancy of frequency 
spectra and amplitude between the actual curved multiple 
and its model (Figure 3 (b4)). This issue is well resolved by 
ACDS as most multiple energy is properly removed, except 
for the overlapped area in (b5). However, we realize that 
multiple models in example (a) and (b) differ from the actual 
multiples in the high- and low-frequency range, respectively; 
and there are still observable residuals of high-frequency 
multiples indicated in Figure  3 (a5) and low-frequency 
multiples in (b5). The strategy in applying FrACDS for 
primary-multiple separation is to put special emphasis on 
model fidelity in different frequency bands so as to more 

Figure 3 Upper panels (a) and lower panels (b) show two synthetic examples illustrating the effects of primary-multiple separation by LS, ACDS and FrACDS 
approaches. Panel (1): multiple contaminated data; (2): multiple models; (3): optimal LS results; (4): non-adaptive curvelet domain separation results; (5): ACDS 
results; (6): FrACDS results. The zoom-in insets of (5) and (6) with +6 dB gain highlight the difference between the ACDS and FrACDS results, as annotated by 
the blue circles.
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removes some of the overlapping primary energy indicated by 
the red ellipses shown in Figure 5(e). On the contrary, FrACDS 
removes the multiples with minimal damage to the primaries, 
as highlighted by the red ellipses in Figure 5(f). This is because 
the dip differentiation between the overlapping primaries and 
multiples was captured by FrACDS, which enhances their 
separability in the curvelet domain. Furthermore, due to the 
presence of the high-frequency noise, the multiple model in 
the corresponding high-frequency bands is less credible than 
its low-frequency component. The LS approach fails to cleanly 
remove the high-frequency multiples, as is manifested by the 
amount of multiples removed shown in (e); however, FrACDS 
fully recognizes the model fidelity and noise level across all 
frequencies, thus the separation result is not compromised in 
different frequency bands (Figure 5(f)).

The benefit of multiple attenuation by FrACDS can also be 
seen in pre-migration stacks (Figure 6). Again, it is evident that 
the FrACDS approach preserves primaries better than the LS 
method. This is shown by the better continuity of the strong 
primaries in the highlighted area of Figure  6 (c) compared 
to Figure  6 (b), and a more contrasted comparison of the 
difference between input seismic data and resulting primary 
in Figure  6 (e) and (f). Meanwhile, the higher resolution of 
detailed structures in the removed multiples in (f) than in (e) 
also indicates the high-frequency multiple residuals in the LS 
result depicted in (b), but not in the FrACDS result shown in 

that the first-order water bottom multiple is completely 
removed by FrACDS but not by LS, annotated by the blue 
arrows (Figure 4 (b) and (c)). The boundaries of salt bodies 
are preserved by FrACDS, but are severely contaminated by 
LS, as indicated by the yellow arrows in (e) and (f); besides, 
the migration swings are attenuated at the top of the salt 
body on the right with FrACDS. The superior preservation 
of primary events by FrACDS is also evident as shown 
in the areas of the anomaly (lower-right) and the parallel 
sedimentary (upper-left) areas, indicated by the cyan arrows. 
Apparently, from panel (e) and (f) showing the attenuated 
energy, FrACDS outperforms LS in terms of both primary 
preservation and multiple attenuation.

The field data that we used for testing our approach is 
from a 3D BroadSeis survey conducted by CGG for Shell 
Brunei in 2012, which covers an area of 3100 km2 (Soubaras 
and Dowle, 2010). 3D SRME was applied to predict surface-
related multiples for this project (Lin et al., 2005). Noticing 
that the multiple model has a certain degree of discrepancy in 
terms of frequency content and the data are contaminated with 
high-frequency noise, we applied FrACDS to provide more 
flexibility in solving these difficulties. In Figure  5, common 
mid-point (CMP) gathers are shown after normal moveout 
(NMO) correction. Multiples with a relatively low amplitude 
level are masked by the strong primaries, as highlighted by the 
green dashed box in Figure 5(b) and 5(c). The LS approach 

Figure 4 (a) multiple contaminated RTM stack of BP2004 synthetic model. (b) RTM stack with multiple attenuated by LS; (c) by FrACDS; (d) RTM stack of RTDM 
generated multiple model; (e): (a)-(b); (f): (a)-(c).
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a starting point, we provide an alternative by adaptively pre-
conditioning the predicted multiple models using least squares 
matched filtering. Our approach has been demonstrated to be 
an effective and robust tool for handling various types of mul-
tiple models. To meet the challenges caused by to the increas-
ing complexity of seismic data, we have also proposed a more 
flexible implementation of primary-multiple separation in 
the curvelet domain, FrACDS, by incorporating optimization 
for different frequency bands. FrACDS provides optimized 
separation results especially in the presence of high noise 
levels and tends to preserve primary events better by reduc-
ing the difference between predicted and actual multiples. 
The generality of FrACDS allows it to be effectively applied 
for handling internal multiples as well as surface-related 
multiples and on marine data as well as land data. While our 
current implementation is in 2D, the algorithm that we have 
described can readily be extended to 3D. We envisage that the 
3D implementation will further enhance the effectiveness of 
primary-multiple separation, particularly when multiples cross 
over or overlap with primaries by having an extra dimension 
to differentiate multiples from primaries.
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(c). In this example, FrACDS is used to overcome the narrow-
ing of the frequency bandwidth caused by the convolution pro-
cess in 3D SRME and for handling the high-frequency noise so 
that it can be more effective in separating the multiple-related 
curvelet coefficients from the primary-related curvelet coeffi-
cients. Consequently, the separation result by FrACDS presents 
a cleaner image with a lower noise level and less residual 
multiples compared to the LS result; while the damage of the 
primary energy in the low-frequency band is minimized, as 
indicated by the arrows and dashed circles in Figure 6. FrACDS 
honours differentiation of local dips between primaries and 
multiples, and allows for a higher degree of model deviation; 
these aspects allow FrACDS to produce favourable results. 
Apart from protection of the low-frequency components, 
FrACDS is very robust in attenuating high-frequency multiples, 
in the presence of moderate noise levels. Hence, we have 
demonstrated that FrACDS provides a high-fidelity solution 
for primary-multiple separation of field data.

Conclusion
We have developed a modified approach of primary-multiple 
separation for removing multiples from noisy seismic data in 
the curvelet domain. Synthetic and field data examples dem-
onstrate that our approaches outperform the conventional LS 
method in terms of multiple removal and primary preserva-
tion (and to some extent, noise attenuation). Based on current 
implementations of the curvelet domain separation method as 

Figure  5 NMO-corrected CMP gathers. (a) input 
data before multiple attenuation; (b) multiple 
separation result by LS; (c) multiple separation 
result by FrACDS; (d) 3D SRME multiple model; 
(e) difference between (a) and (b); (f): difference 
between (a) and (c).

Figure  6 Pre-migration full stacks. (a) input data 
before multiple attenuation; (b) multiple separa-
tion result by LS; (c) multiple separation result by 
FrACDS; (d) 3D SRME multiple model; (e) differ-
ence between (a) and (b); (f): difference between 
(a) and (c).
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