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SUMMARY
While 5D data reconstruction has become widespread in recent years, we show that the use of 5D model
spaces in some settings may result in sub-optimal handling of structures exhibiting HTI traveltime
behaviour. To overcome these problems we propose the use of a 6D model space based on an extension of
equations previously used for 3D Radon demultiple. The model is obtained using a sparse solver based on
the anti-leakage Fourier transform. Synthetic and real datasets exhibiting HTI anisotropy are used to
illustrate the signal preserving benefits of the approach.
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 Introduction 

Multi-dimensional data reconstruction has become commonplace in many regions as an effective 
strategy to increase the signal-to-noise ratio of low fold wide azimuth data and modify spatial 
sampling prior to imaging. A similar approach may also be used to improve the signal-to-noise ratio 
of high fold point-source point-receiver data which pre-stack may have high noise levels (Poole, 
2011). Algorithms using all four spatial dimensions simultaneously are more consistent than working 
with lower dimensional subsets of an input dataset. 

Many 5D data reconstruction algorithms have been developed which may be based on one of several 
spatial definitions (e.g. (shot-x, shot-y, receiver-x, receiver-y), (midpoint-x, midpoint-y, offset-x, 
offset-y), (midpoint-x, midpoint-y, offset, azimuth)). Note that although the input data is five-
dimensional, it is only irregularly sampled in four spatial dimensions (the time direction is regularly 
sampled). Some algorithms assume that input data consists of an irregular coverage on a fixed grid, 
e.g. minimum weighted norm interpolation (Trad, 2009), projection onto convex sets (Abma and 
Kabir, 2006), rank reduction (Trickett et al., 2010).  Other methods which respect the input sampling 
more precisely include the non-uniform Fourier transform, and the anti-leakage Fourier transform (Xu 
et al., 2005, Poole, 2010). 

One theme linking several of the algorithms is the use of model domain weights which reduce the 
impact of irregular input sampling and allow the interpolation of data beyond the point of aliasing.  
The success of sparseness constraints relies on the model space specification being representative of 
the behaviour of the input data.  Within small space-time windows this is often generally the case 
where complex structures may be simplified to linear events. 

In this paper we introduce the use of a six-dimensional model space to improve the spatial 
reconstruction of five-dimensional data. We demonstrate the effectiveness of this approach by 
denoising a dataset exhibiting horizontal transverse anisotropy.  

Theory 

The forward Fourier transform of the recorded data at a single temporal frequency in four irregularly 
sampled spatial dimensions may be defined as: 𝑚൫𝐾𝑥 ,𝐾𝑦 , 𝐾ℎ , 𝐾𝜃൯ = ෍𝑤𝑛𝑑𝑛𝑒2𝜋𝑖 𝑥𝑛𝐾𝑥𝑒2𝜋𝑖 𝑦𝑛𝐾𝑦 𝑒2𝜋𝑖ℎ𝑛𝐾ℎ 𝑒2𝜋𝑖 𝜃𝑛𝐾𝜃 (1)𝑁

𝑛=1  

where m is the Fourier transform, dn are the input data for one frequency slice, xn, yn, hn, and n are the 
recording coordinates of each trace in the midpoint-x, midpoint-y, offset, and azimuth directions 
respectively, and Kx, Ky, Kh, and K are wavenumbers in each spatial dimension. The coordinates in 
the above notation are assumed to be normalized to the range 0 to 1. The integration weights, wn, may 
be derived using Voronoi tessellation and are normalized to sum to unity.  

Often the model is derived using spatio-temporal windows within which we consider the data to 
consist of a number of linear events. While this assumption is generally reasonable in the midpoint-x, 
midpoint-y, and offset directions, events are not generally linear in the azimuth direction. Although 
the use of small azimuthal windows may overcome this problem, often this is not possible due to the 
high variation of sampling in azimuth. One way to overcome this problem is to alleviate the necessity 
for azimuthal windowing by changing the model parameters to make them more appropriate for the 
kinematic behavior of the data. 

Hugonnet et al. (2008) propose the use of a 4D Radon domain using elliptical parameters and 
demonstrate its benefits for 3D Radon demultiple in regions exhibiting azimuthal timing variations. 
We extend equation 1 based on the parameterization of Hugonnet et al. (2008) resulting in a spatially 
five-dimensional model space as given by equation 2: 𝑚൫𝐾𝑥 ,𝐾𝑦 , 𝑄, 𝑅, 𝑆൯ = ෍𝑤𝑛𝑑𝑛𝑒2𝜋𝑖 𝑥𝑛𝐾𝑥𝑒2𝜋𝑖 𝑦𝑛𝐾𝑦 𝑒2𝜋𝑖𝑞𝑛𝑄𝑒2𝜋𝑖 𝑟𝑛 𝑅𝑁

𝑛=1 𝑒2𝜋𝑖 𝑠𝑛 𝑆 (2) 
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 where qn=hn
2, rn=hxn

2-hyn
2, sn=2hxnhyn. hxn and hyn relate to the offset of each trace in the x- and y-

directions respectively. Q, R, and S relate to parabolic model parameters with dimension time/length2. 

To reduce spectral leakage and encourage orthogonality of the model parameters, m is derived using 
an iterative application of equation 2 following the method of Xu et al. (2005). Model parameters are 
derived one at a time starting with the strongest and working to the weakest. After a model parameter 
is derived it is inverse transformed to the input positions and subtracted before further parameters are 
computed.  

While the use of a high dimensional model space can increase computational runtimes, it should be 
noted that the model space is also very sparsely populated. Once the significant regions of the model 
domain have been identified the transform is not significantly slower than the standard 5D approach. 

The model may then be used to reconstruct data at any surface source/receiver location. Denoising 
may be optionally applied by attenuating energy in the model domain. This may involve attenuating 
regions of the model space relating to coherent noise or by attenuating the weaker model parameters 
which relate to background random noise. 

Synthetic example 

We generated a synthetic dataset based on a 
horizontal layer exhibiting HTI anisotropic 
travel-time behaviour.  The input source and 
receiver positions were taken from a real dataset. 
A comparison was made between the data 
regularisation results using a 5D model space and 
the proposed 6D model space. A perfect result 
was generated for comparison by modelling the 
synthetics on the output positions. The results, 
shown in Figure 1, illustrate the shortfall of a 5D 
model space in regions exhibiting strong 
azimuthal anisotropy. The regularised data at 
high offsets using a 6D model space are 
significantly more accurate than the use of a 5D 
model space, leading to a better match with the 
perfect synthetic. 

 

Figure 1) CMP gather comparing data 
regularisation using 5D and 6D model spaces for 

an event with strong azimuthal anisotropy. 

Real data example 

The following real data example comes from a 3D land dataset acquired in Uganda. The acquisition 
utilised 100 m shot line spacing and 100 m receiver line spacing.  The shot and receiver spacings were 
25 m and 12.5 m respectively.  This resulted in a stacked dataset with a nominal fold of 84. 

Figure 2 compares pre-migration denoising of these data using a 5D model space versus the proposed 
6D model space. While we observe a similar level of denoising between the results, it is evident that 
the 6D algorithm has achieved a small improvement in overall signal preservation. Figure 3 makes the 
same comparison after stack where the 5D model space is seen to exhibit some cross-hatching noise at 
the timing of an event with HTI azimuthal anisotropy. The difference using the 6D model shows 
similar noise attenuation without the cross-hatching. 

Common offset vector (COV) data were time migrated following which 6D denoising was employed 
as pre-processing prior to HTI azimuthal velocity analysis using the method of Davison et al. (2011). 
The resulting moveout parameters were used to gather flatten the pre-denoise data which is displayed 
in Figure 4. We observe an overall improvement in gather flatness and improved spatial consistency 
using the proposed method. 



                                                                                                                                 

77th EAGE Conference & Exhibition 2015 
IFEMA Madrid, Spain, 1-4 June 2015 

1-4 June 2015 | IFEMA Madrid

 Conclusions 
We have introduced a 5D data regularisation algorithm using a 6D model space solved iteratively in a 
similar way to the anti-leakage Fourier transform. Following Hugonnet et al. (2008) the proposed 
model space is designed to accurately preserve detailed (e.g., HTI) traveltime behaviour which 
conventional regularisation is ill-equipped to handle. Synthetic and real datasets highlight the 
beneficial properties of the 6D model definition for preservation of HTI azimuthal anisotropy though 
improved signal preservation. 
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Figure 2) CMP comparison of denoising results using 5D and 6D model spaces. 

Input

5D Denoise

6D Denoise

5D Difference

6D Difference

Ti
m

e

CMP

 
Figure 3) Stack comparison of denoising results using 5D and 6D model spaces. 
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 a) Before correction

b) HTI correction derived from input

c) HTI correction derived from 6D denoise
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Figure 4) Post migration HTI velocity analysis before and after denoise using 6D model space. 
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