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ABSTRACT

The prediction of porosity is essential for the identification of productive hydrocarbon reser-
voirs in oil and gas exploration. Numerous useful technologies have been developed for porosity
prediction in the subsurface, such as multiple attribute analysis, kriging, and cokriging. Kriging
allows us to create spatial maps from point information such as well log measurements of poros-
ity. Cokriging combines well log measurements of porosity with seismic attributes recorded
between the wells to improve the estimation accuracy of the overall map. However, the tradi-
tional cokriging for porosity estimation is limited to only one seismic attribute. To introduce
more geological information and improve the accuracy of prediction, we develop a new cokrig-
ing system that extends traditional cokriging to two secondary variables. In this study, our new
cokriging system is applied to the Blackfoot seismic data from Alberta, and the final estimated
map is shown to be an improvement over kriging and traditional single attribute cokriging. To
show this improvement, "leave-one-out" cross-validation is employed to evaluate the accuracy
of porosity prediction with kriging, traditional cokriging, and our new approach. Compared to
kriging and traditional cokriging, an improved porosity map, with higher lateral geological res-
olution and smaller variance of estimation error, was achieved using the new cokriging system.
We believe that the new approach can be considered for porosity prediction in any area of sparse
well control.

INTRODUCTION

Porosity prediction plays an essential role in predicting elastic rock properties and planning
production operations (Doyen, 1988). Many techniques have been introduced to predict porosity
in subsurface reservoirs, for instance, kriging, cokriging, multi-attribute analysis. The kriging
system uses only high vertical resolution well log data in the spatial interpolation, but well
logs are poorly sampled laterally. However, the advantage of kriging is that the well values
are honored perfectly. On the other hand, multi-attribute analysis gives good spatial resolution
if 3D seismic data is used, but it is hard to match the exact well values, since these values
are predicted using a least-squares algorithm. Cokriging, a geostatistical technique, has been
considered in porosity prediction since it’s introduced into the geophysical industry by Doyen
(1988) based on theory developed by Matheron (1965). The objective of the cokriging technique
is to use attributes, such as acoustic impedance, amplitude or travel time extracted from 3D
seismic data, as a secondary variable to guide the interpolation of related well log data, called
the primary variable, such as porosity, shale volume or depth. Doyen (Doyen, 1988) applied
cokriging to predict porosity by using acoustic impedance extracted as secondary variable from
3D seismic data. Cokriging produces maps that contain the spatial trends constructed by the
spatial correlation function to model the lateral variations of the reservoir properties (Doyen
et al., 1996).

The traditional cokriging system combines well log data and seismic attribute data, but only
one secondary dataset is allowed in calculation. It is necessary to corroborate more than one
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seismic attribute to support the prediction because every attribute has a particular useful infor-
mation about reservoir and to predict rocks properties (Guerrero et al., 1996). To optimize the
secondary data, numerous methods have been proposed. Russell et al. (2002) combine cokrig-
ing and multi-attribute transforms. As Russell et al. (2002) illustrated, the secondary input of
cokriging is an improved map generated by multi-attribute analysis. Babak and Deutsch (1992)
improved the cokriging model by merging all secondary data into a single super secondary
dataset and then implementing the cokriging system with the single merged secondary dataset.
Nevertheless, those super secondary data were obtained under assumptions which are unprac-
tical. For example, the multi-attribute algorithm assumes that the predicted areas are highly
correlated to the well tie locations, and the linear combination of all secondary data is assumed
to generate the super data by merging.

In this paper, to satisfy those assumptions and improve the estimation, we present a new
approach that introduces two secondary variables in the cokriging. Two advantages are achieved
with the new cokriging system. First, the lateral geological resolution of the final produced maps
is increased at the locations away from the well locations because the secondary variable brings
in extra geological information. Secondly, the addition of the second seismic attribute offers an
opportunity to decrease the variance of the estimation error.

METHODOLOGY

The traditional cokriging method consisted of one primary and one secondary variable. To
introduce more seismic attributes into the estimation, a new cokriging system consisting of one
primary and two secondary variables is implemented. The new algorithm exploits the cross-
correlation not only between the primary and secondary variables, but also between the two
secondary variables.

As with the traditional cokriging algorithm (Isaaks and Srivastava, 1989), the cokriging sys-
tem containing one primary and two secondary variables is defined as:

û0 =
n∑

i=1

ai · ui +
m∑
j=1

bj · vj +
p∑

k=1

ck · xk (1)

where û0 is the estimate of U at location 0. u1, u2, . . . , un are the primary data at n locations;
v1, v2, . . . , vm and x1,x2, . . . , xp are the secondary data at m locations and k locations. a1,a2,
. . . , an, b1,b2, . . . , bm, and c1, c2, . . . , cp are cokriging weights to be determined.

Then the estimation error can be written as

R = û0 − u0 =
n∑

i=1

ai · ui +
m∑
j=1

bj · vj +
p∑

k=1

ck · xk − u0 (2)

where u1, u2, . . . , un are variables representing the U phenomenon at the n locations where
U has been sampled, v1, v2, . . . , vm are variables representing the V phenomenon at the m
locations where V has been sampled, and x1,x2, . . . , xp are variables representing the X phe-
nomenon at the p locations where X has been sampled.

2 CREWES Research Report — Volume 27 (2015)



Cokriging with Multiple Attributes

Also, equation (2) can be rewritten in matrix form as

R = wtZ (3)

where wt = (a1, a2, . . ., an, b1,b2, . . . , bm, c1, c2, . . . , cp, -1) and Zt = (u1, u2, . . . , un, v1, v2,
. . . , vm, x1,x2, . . . , xp, u0).

Then, the variance of R can be expressed as

Var
{
R
}
= wtCzw

=
n∑

i=1

n∑
j=1

aiajCov
{
uiuj

}
+

m∑
i=1

m∑
j=1

bibjCov
{
vivj

}
+

p∑
i=1

p∑
j=1

cicjCov
{
xixj

}
+ 2

n∑
i=1

m∑
j=1

aibjCov
{
uivj

}
+ 2

n∑
i=1

p∑
j=1

aicjCov
{
uixj

}
+ 2

m∑
i=1

p∑
j=1

bicjCov
{
vixj

}
− 2

n∑
i=1

aiCov
{
uiu0

}
− 2

m∑
i=1

biCov
{
viu0

}
− 2

p∑
i=1

ciCov
{
xiu0

}
+ Cov

{
u0u0

}
(4)

where Cov
{
uiuj

}
is the auto-covariance between ui and uj , Cov

{
vivj

}
is the auto-covariance

between vi and vj , and Cov
{
xixj

}
is the auto-covariance between xi and xj , Cov

{
uivj

}
is the

cross-covariance between ui and vj , Cov
{
uixj

}
is the cross-covariance between ui and xj , and

Cov
{
vixj

}
is the cross-covariance between vi and xj .

Similarly to the traditional cokriging method, two conditions must be satisfied. First, the
weights in equation (1) must be unbiased. Secondly, the error variances in equation (2) must be
as small as possible.

To tackle the unbiasedness condition, the expected estimation value in Equation (1) is com-
puted as below,

E(Û0) = E
{ n∑

i=1

aiui +
m∑
j=1

bjvj +

p∑
k=1

ckxk
}

=
n∑

i=1

aiE{ui}+
m∑
j=1

bjE{vj}+
p∑

k=1

ckE{xk}

= m̃U

n∑
i=1

ai + m̃V

m∑
j=1

bj + m̃X

p∑
k=1

ck

(5)

where E
{
Ui

}
= m̃U , E

{
Vj
}

= m̃V , and E
{
XK

}
= m̃X . To make this function to be unbiased,

we need
∑n

i=1 ai = 1,
∑m

j=1 bj = 0, and
∑p

k=1 ck = 0 as the unbiased conditions.

To hounor the second condition, we need to minimize the error variance (equation (2)). The
Lagrange multiplier method (Ito and Kunisch, 2008) is used to minimize a function with three
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constraints. We equate each non-biased condition to be zero, multiply by a Lagrange multiplier,
and then add the result to equation (4). The following equation gives the mathematical algorithm
behind Lagrange multipliers:

Var
{
R
}
= wtCzw + µ1(

n∑
i=1

ai − 1) + µ2(
m∑
j=1

bj) + µ3(

p∑
k=1

ck) (6)

where µ1, µ2, and µ3 are the Lagrange multipliers. Considering the unbiased condition, the three
additional terms in equation (6) are equal to zero and do not contribute to the error variance
Var

{
R
}

.

In order to minimize equation (6), the partial derivatives of Var
{
R
}

with respect to the
n+m+p weights (a, b, c) and three Lagrange multipliers ( µ1, µ2, µ3) have to be equal to zero
because the minimum occurs at zero. Those functions are expressed as,

∂V ar
{
R
}

∂aj
= 2

n∑
i=1

aiCov
{
uiuj

}
+ 2

m∑
i=1

biCov
{
viuj

}
+ 2

p∑
i=1

ciCov
{
xiuj

}
− 2Cov

{
u0uj

}
+ 2µ1 for j = 1, . . . , n

(7)

∂V ar
{
R
}

∂bj
= 2

m∑
i=1

biCov
{
vivj

}
+ 2

n∑
i=1

aiCov
{
uivj

}
+ 2

p∑
i=1

ciCov
{
xivj

}
− 2Cov

{
u0vj

}
+ 2µ2 for j = 1, . . . ,m

(8)

∂V ar
{
R
}

∂cj
= 2

p∑
i=1

biCov
{
xixj

}
+ 2

n∑
i=1

aiCov
{
uixj

}
+ 2

m∑
i=1

biCov
{
vixj

}
− 2Cov

{
u0xj

}
+ 2µ3 for j = 1, . . . , p

(9)

∂V ar
{
R
}

∂µ1

= 2
n∑

i=1

ai − 1 (10)

∂V ar
{
R
}

∂µ2

= 2
m∑
i=1

bi (11)

∂V ar
{
R
}

∂µ3

= 2

p∑
i=1

ci (12)

Recording equation 7-12, we get the final cokriging system,
n∑

i=1

aiCov
{
uiuj

}
+

m∑
i=1

biCov
{
viuj

}
+

p∑
i=1

ciCov
{
xiuj

}
+ µ1 = Cov

{
u0vj

}
for j = 1, . . . , n

(13)
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n∑
i=1

aiCov
{
uivj

}
+

m∑
i=1

biCov
{
viuj

}
+

p∑
i=1

ciCov
{
xivj

}
+ µ2 = Cov

{
u0vj

}
for j = 1, . . . ,m

(14)

n∑
i=1

aiCov
{
uixj

}
+

m∑
i=1

biCov
{
viuj

}
+

p∑
i=1

ciCov
{
xixj

}
+ µ3 = Cov

{
u0xj

}
for j = 1, . . . , p

(15)

n∑
i=1

ai = 1, (16)

n∑
i=1

bi = 0, (17)

n∑
i=1

ci = 0 (18)

Note thatCov
{
UiVj

}
=Cov

{
ViUj

}
,Cov

{
UiXj

}
=Cov

{
XiUj

}
andCov

{
ViXj

}
=Cov

{
XiVj

}
We write the matrix form of equations(13) to (18) as,

Cuu Cvu Cxu 1 0 0
Cuv Cvv Cxu 0 1 0
Cux Cvx Cxx 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




a
b
c
µ1

µ2

µ3

 =


Cu0u

Cu0v

Cu0x

1
0
0

 (19)

where Cuu is the auto-covariance of the primary variable, Cvv is the auto-covariance of first
secondary variable, and Cxx is the auto-covariance of the second secondary variable. Cuv is
the cross-covariance between primary and first secondary variables, Cux is the cross-covariance
between primary and second secondary variables, Cxv is the cross-covariance of two secondary
variables, µ1, µ2, and µ3 are the Lagrange multipliers and a, b, and c are weight vectors of
primary, first secondary, and second secondary variables to be determined. Note that Cuv = Cvu,
Cux = Cxu, and Cxv = Cvx.

In next section, matrix equation (19) is considered as a new cokriging system, which involves
two seismic attributes to be combined with well log data. This system will be implemented for
the porosity prediction using seismic data from Alberta.

CASE STUDY

This case study predicts porosity using the new cokriging estimation system described in the
previous section and compares the result with maps generated by kriging and traditional cokrig-
ing. The procedure for implementing the new cokriging porosity prediction is as follows: (1)
Prepare input data. (2) Calculate variograms. (3) Perform cokriging (4) Compare the perfor-
mance. (5) Apply cross-validation.
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Input data

The survey data was recorded over the Blackfoot field located in southern Alberta in 1995 for
PanCanadian Petroleum. There are twelve wells involved in this study area, all of which contain
calculated porosity logs. The porosity is treated as the primary variable, which is computed
using an average value between the picked top and base of the zone of interest in each well.
Figure 1 shows the well locations in the survey area and the porosity value at each location.

FIG. 1: Well location display with porosity value

The two secondary datasets consist of two structure slices extracted from the acoustic impedance
inversion of the stacked P-wave seismic data. To obtain the inversion volume, we build an initial
model from the well logs and pick horizon on the seismic section and stop perturb this model
until the synthetic seismogram for each trace in the volume has a best least-squares match with
the original data. Figure 2a shows crossline 18 from the seismic volume, showing correlated
sonic logs from two intersecting wells, 14-09 and 13-16, and the picked channel top. Figure 2b
shows crossline 18 from the inverted volume. The color key indicates impedance.

The horizon slice of the P-wave impedance inversion was computed by using an arithmetic
average over a 10 ms window below the picked channel top from the 3D inverted volume. Sim-
ilarly, we extracted three data slices, seismic amplitude, amplitude envelope, and instantaneous
phase, by calculating a 10 ms RMS average over the zone of interest. The cokriging estimation
system requires a strong correlation between the primary and secondary variables. Thus, we
calculated correlation coefficients between the porosity values and all four data slices. The best
two correlation coefficients are calculated from the inversion slice and seismic amplitude slice,
which are -0.65 and 0.41, respectively. Thus, we use the inversion slice (Figure 3) and seismic
amplitude slice (Figure 4) as the two secondary inputs.
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Variograms and Covariance

A variogram is a concise way to describe the degree of spatial dependence between the input
data and is calculated by,

γuv(h) =
1

2N(h)

∑
(i,j)|hij=h

(ui − uj)(vi − vj) (20)

where h is the lag distance. N(h) is the number of data pairs whose locations are separated by
h. γuv(h) is the cross variogram for lag h. u and v are input data. The spatial interpolation is
based on the principle that close samples tend to be more similar than distant samples.

Figure 5 shows 6 variograms obtained from the well log values and two seismic attributes.
Figure 5a, 5e, and 5f are auto-variograms of well log data, inversion, and seismic amplitude,
respectively. The cross-variogram are shown in Figure 5b, Figure 5c, and Figure 5d.

A spherical model was chosen to fit the variogram as shown in Figure 5. Then, covariance
model is computed by

Cov(h) = γ(∞)− γ(h) (21)

(a) The final CDP stack

(b) P-wave impedance horizon slice

FIG. 2: Crossline 18 from the 3-D seismic volume
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FIG. 3: Inversion slice

FIG. 4: Seismic amplitude slice

where Cov(h), the covariance model, is a function of lag h, γ(h) is the variogram value of lag
h, and γ(∞) is the variogram value for very large distances, commonly called the sill.

The map of predicted porosity can be generated from matrix equation (19) after determining
the weights (a, b, c).

Map Results

To evaluate the predicted result under the new cokriging system, the estimates from the
kriging and the traditional cokriging were calculated and compared. The kriging interpolation
(Figure 6) looks like a filter away from the data points. Figure 7 shows the result generated
by traditional cokriging with only the impedance inversion utilized and Figure 8 shows the
estimation with only the amplitude data slice as the secondary input. The final produced porosity
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(a) Well to Well Variogram (b) Well to Seismic Inversion Variogram

(c) Well to Seismic Amplitude (d) Seismic Amplitude to Inversion Variogram

(e) Seismic to Seismic Inversion (f) Seismic to Seismic Amplitude

FIG. 5: Variograms

map (Figure 9) was constructed by implementing equation (19), and including both impedance
inversion and seismic amplitude attributes.

All of the cokriging estimates add extra geological information compared to the results from
kriging using only well log data. Compared to the traditional cokriging result, there is no sig-
nificant difference in using two attributes where there is good well distribution. However, the
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FIG. 6: Kriging interpolation with well log data

FIG. 7: Traditional cokriging prediction with inversion

results using the new cokriging approach show higher lateral resolution and a remarkable dif-
ference in those areas where there is little well control. For a more quantitative, "leave-one-out"
cross-validation was employed to calculate RMS errors for kriging, the traditional cokriging,
and the new cokriging system.

Cross-validation

Cross-validation is used to validate the accuracy of an interpolation (Voltz and Webster,
1990). "Leave-one-out" cross-validation calculates the difference between the predicted and
actual values by removing one well log at a time and computing the root-mean-square error of
kriging with the other wells. The average error of leaving each well out is then computed, and
is expressed as
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FIG. 8: Traditional cokriging prediction with seismic amplitude

FIG. 9: Cokriging prediction with two secondary data (inversion and seismic amplitude)

ERMS =

√√√√ 1

N

N∑
i=1

{
z(xi)− ẑ(xi)

}2 (22)

where z(xi) is the actual value and ẑ(xi) is the estimated value by leaving one out. N is the
numbers of "leave-one-out" calculations implemented, which corresponds to the number of well
values in the primary dataset.

RMS errors of kriging, traditional cokriging with inversion, traditional cokriging with seis-
mic amplitude, and the new cokriging system are given by the histograms shown in Figure 10.
It is worth noting that the new approach shows a lower RMS error than other approaches. In
other words, the new cokriging system, involving two well correlated secondary datasets, gives
a better estimation of the porosity.
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FIG. 10: Leave-one-out Cross-validation

CONCLUSION

In this paper, we have derived and presented a new cokriging estimation system with one
primary and two secondary variables, which is designed to bring extra geological information
into the estimation process. The case study shows that the new approach is able to improve
the spatial lateral resolution at locations away from the well values when compared with the
traditional cokriging estimation system.

The "leave-one-out" cross-validation method was applied to validate the accuracy of the new
cokriging results. The new cokriging system gives a lower RMS error than the RMS errors of
kriging and traditional cokriging. This is due to the additional attribute which was added in the
implementation. Furthermore, the new cokriging system offers us a new way to include more
than one seismic attribute into the estimation of porosity with cokriging, and could be extended
to three or four variables. Finally, it can be concluded that the new cokriging estimation system
with one primary and two secondary variables is a step forward for producing improved map
estimates from well log data and seismic results.
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