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Resolving the AVOAz Symmetry Axis Ambiguity
J.E. Downton* (CGG)

SUMMARY
Remotely detecting information about fractures and the stress field is an important objective in the
development of unconventional and tight hydrocarbon reservoirs. Fractures and stress cause the earth to
become anisotropic which is seismically observable. By observing the P-wave seismic amplitude variation
with offset and azimuth (AVOAz) it is possible to infer the presence of fractures and their orientation.
Unfortunately, the estimate of the fracture orientation is non-unique with two solutions 90 degrees apart.
This issue is well known in the case of the near-offset AVOAz inversion, but is also true for the far-offset
approximation. In the case of the far-offset approximation, the azimuth ambiguity also leads to biases in
the remaining parameter estimates. This paper explores using geologic and rock physics constraints to
resolve this issue. A priori information about the horizontal stress field and the form of the anisotropy is
used to determine the symmetry axis orientation for both the near-offset and far-offset AVOAz inverse
problems.
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Introduction 

A method to solve the seven-parameter linearized AVOAz inversion in transverse anisotropic media 

with a horizontal symmetry axis (HTI), and vertical fractures in an isotropic (VFI) background 

medium is demonstrated.   The seven parameters include: three background parameters such as 

density, P-wave and S-wave impedance reflectivity; and four anisotropic parameters including an 

orientation parameter. The HTI Rüger equation (1998) is a subset of this problem.  One of the key 

elements in solving the seven-parameter inverse problem is determining the azimuth of the symmetry 

axis in the case of HTI media, or of the fracture normal in the case of VFI media.  For brevity both 

azimuths are referred to in this paper as the symmetry axis azimuth sym. The inverse problem is 

nonlinear with a bimodal solution.  The nonuniqueness manifests itself as a 90 degree ambiguity in 

the estimate of sym biasing the remaining six parameters.  Through the introduction of geologic and 

rock physics constraints the most likely solution may be chosen.  

I begin by reviewing the linearized AVOAz expression written in terms of azimuthal Fourier 

coefficients (FCs) (Downton et al., 2011) and the parameterizations specific to HTI and VFI media.  

By writing this in block matrix notation, it is possible to decompose the problem into simpler parts for 

analysis.  The solution of the near-offset linearization is next reviewed with the objective of 

introducing the symmetry axis ambiguity.  It is shown that a priori knowledge of the regional stress 

field may be used to preferentially choose one solution over the other.  Having reviewed the near-

offset case, the more complex far-offset problem is discussed and shown to exhibit the same 

ambiguity.  In this case constraints based on the rock physics of fractured media are employed to help 

resolve the ambiguity. Both synthetic and real seismic data examples are shown to illustrate the 

method.       

Linearized seven-parameter AVOAz 

Downton and Roure (2015) write the linearized seven-parameter P-wave AVOAz reflectivity, for HTI 

and VFI media as the truncated Fourier series  

             .4cos2cosr, 420 symsym rrR   (1) 

The reflectivity varies as a function of incidence angle  and azimuth In equation (1) the 

magnitudes of the sinusoids of periodicity n = 0, 2 and 4 are  
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000  CBAr    (2) 
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22  CBr    (3)  

  ,tansin 22

44  Cr    (4) 

where the definitions of the parameters A0, B0, C0, B2, C2 and C4 depend on the form of the anisotropy 

and are described in Downton and Roure (2015).  This paper focuses on the B2, C2 and C4 parameters 

since they control the Amplitude variation with Azimuth (AVAz).  In HTI media  𝐵2 = 0.5𝐵𝑎𝑛𝑖,
)(

2 25.0 vC  and  vC .16/14  The parameter Bani is the anisotropic gradient, (v)
is the Thomsen

parameter describing the P-wave anisotropy and (v)
 represents the anellipticity (Rüger, 2002). All the 

parameters are evaluated at the interface generating the reflectivity with the symbol  denoting the 

difference operator between the lower and upper medium.  The phase of the sinusoids is controlled by 

sym.  In the case of VFI media, the parameters B2, C2 and C4 are parameterized in terms of fracture 

weakness parameters.  Rotationally asymmetric fractures give rise to orthorhombic anisotropy. The 

medium is described by the vertical, horizontal and normal fracture weakness parameters V, H, and 

N respectively.   The transformation linking these parameters is   
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where g is the squared S-wave to P-wave velocity ratio of the background media.   The case of 

rotationally symmetric fractures gives rise to HTI anisotropy.  In this case, both the vertical and 

horizontal fracture weaknesses are equal and are replaced by the single parameter, the tangential 

fracture weakness T. 

AVOAz Inversion 

In order to solve the linearized AVOAz inverse problem it is easier to write the Fourier series in terms 

of cosine (un) and sine (vn) functions.  Rewriting equation (1) in block matrix notation  
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shows that the amplitude variation with offset (AVO) and AVAz parts of the problem are decoupled.  In 

equation (6) all the bold faced vectors are functions of incidence angle  with x=sin
2
(),  and z= 

sin
2
()tan

2
().   Although written as a set of  linear equations, equation (6) is actually nonlinear due to 

the sym dependence in the linear operator.  A brute force method to solve this system of equations is to 

iterate over all possible values of sym solving the least squares problem for each possible sym.  The 

solution corresponding to the sym with the minimum misfit is the global solution. 

However, the solution of equation (6) is bimodal and hence nonunique. This is more obvious if only the 

equations describing the AVAz are considered, namely 
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In the near-offset approximation, the z terms 

are ignored, resulting in  
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It can be seen by substitution that both 

(𝜙̂sym, +0.5B̂ani) and (𝜙̂sym +

𝜋 2⁄ , −0.5B̂ani) fit the data equally well.

Typically, only one of the solutions is ratained 

and output.  Figures 1a and 1b show the 

estimated Bani and sym corresponding to the 

positive Bani solution for a 3D seismic inline.  

The azimuth solution oscillates 90 degrees 

between different layers and hence appears 

nonphysical.  Zoback (2007) notes that the 

Figure 1 The (a) anisotropic gradient and (b) 

symmetry axis azimuth calculated using the positive 

Bani.    
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 horizontal stress field should change slowly 

in a regional sense. For stress-induced 

anisotropy the slow direction corresponds to 

the direction of minimum horizontal stress 

(i.e. sym).  If this orientation is known from 

local well control or from the world stress 

map (Heidbach et al., 2008) then this 

information may be used to constrain the 

solution.  In this case, the solution is chosen 

which is most consistent with the minimum 

horizontal stress direction.  The symmetry 

axis azimuth for this solution is shown in 

Figure 2b.  By definition, it fits with the 

known geologic information much better.   A 

further consequence is that Bani has both 

positive and negative values (Figure 2a) which again are more geologically believable.  

Similar to the near-offset case, the solution to the far-offset equation (7) has two solutions, 

(𝜙̂sym, +B̂2, +Ĉ2, Ĉ4) and (𝜙̂sym + 𝜋 2⁄ , −B̂2, −Ĉ2, Ĉ4), as can be seen by substitution.  Constraints

again may be used to reduce the solution space.  Downton et al. (2011) assumed the anisotropy is due to 

vertical rotationally symmetric fractures.  Under this assumption, equation (7) becomes  
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This reduction in the number of free parameters leads to a more stable solution and a global 

minimum,    provided the solution does not 

exist in the null space.   In the more general 

case of rotationally asymmetric fractures, a 

similar constraint may be used.  In this case 

rather than forcing V = H, the solution is 

chosen in which V and H are closest together.  

Figure 3 shows the application of this 

constraint to the inversion of equation (6) on 

synthetic data.  The parameters are 

transformed using equation (5).  

Alternatively, other empirical rock physics 

relationships may be used.  The penny shaped 

crack theory of Hudson (1981) may be used to 

reduce the number of fracture parameters to a 

single variable.  The sign of Bani then depends 

on the background g and the fluid content.  

Another popular approximation is to make the 

P-wave anisotropy  (v)
 approximately equal to 

the S-wave anisotropy (v)
 (Wang, 2002).

These constraints may be used in combination.

For example, a rock physics constraint may be

used in combination with the stress constraint

and some spatial continuity constraint.

Figure 2 The (a) anisotropic gradient and (b) symmetry 

axis azimuth calculated using the stress constraint.    

Figure 3 The (a) normal, vertical and horizontal 

fracture weakness contrast parameters estimated 

from the seven-parameter AVOAz inversion based on 

synthetic data. All show the correct azimuth (b) of 30 

degrees. The fracture weakness contrasts are all 

positive at the top of the fractured zone (1000 ms) 

and negative at the base (1100 ms) and have the 

correct polarity. 
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 The three-parameter AVO inversion is a subset of the seven-parameter AVOAz inversion and 

thus suffers the same stability issues. In order to get stable three-parameter AVO inversion 

estimates, seismic data with exceptional signal-to-noise and incidence angles in excess of 45 

degrees must be acquired and incorporated. The AVOAz inversion problem has the additional 

requirement of azimuth sampling finer than 22.5 degrees with at least 8 azimuths. In practice, it is 

probably more stable to work with reduced parameterizations such as equation (9) and shown in 

Downton et al. (2011).   Alternatively, it might be best to consider this problem as part of 

a simultaneous azimuthal inversion such as Downton and Roure (2010). In the 

AVOAz inversion each time sample is treated as an interface and wavelet issues must be dealt 

with.  For example, at the zero crossing of the wavelet the estimate of sym is unstable.  

Lastly, it is easier to incorporate greater theoretical complexity in azimuthal inversion, such 

as allowing the symmetry axis to vary as a function of layer. 

Conclusions 

Both the near-offset and seven-parameter AVOAz inversions are non-unique and exhibit a 90 degree 

azimuth ambiguity.  This ambiguity biases the remaining six parameter estimates, the size 

and complexity of which depends on the parameterization. This ambiguity may be reduced by 

imposing geologic constraints including: the regional stress field, continuity constraints and empirical 

relations linking the anisotropic parameters.  This study showed how to introduce these constraints 

and also illustrated the solution with both real and synthetic examples. 
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