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SUMMARY
Time-lapse (4D) inversions deal with changes in seismic amplitudes and travel-times. This analysis is
performed on migrated seismic images, which represent the spatial and time-lapse variability of the
medium’s reflectivity. 4D reservoir analysis methods such as inversion and warping need to follow the
structure of the data. Migration effectively rotates the wavelet so that it is normal to the imaged reflectors;
however, the 1D (vertical) convolutional approach, commonly used in 4D inversions to date, does not
honour this directivity. For this reason we recently introduced a wave equation based method which
provides an effective platform for image consistent reservoir analysis. This must be used in processes such
as wavelet extraction, inversion, warping and 4D time-strain inversion. In this paper, we show a data
example from the 4D Baobab survey, offshore Côte d’Ivoire, comparing warping results for time-shifts
and time-strains with a 1D convolutional and the new image consistent inversion.
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Introduction 

A migrated seismic image represents the spatial variability of the earth’s reflectivity. Imaging 

algorithms (migration) map the energy recorded on the surface back to the subsurface locations which 

generated the reflections. The migrated seismic image is then generally interpreted as the convolution 

of a seismic wavelet, ideally temporally and spatially constant, and the underlying reflectivity. 

However, the process of migration effectively rotates the seismic wavelet so that it is everywhere 

normal to the imaged reflectors, instead of being aligned along the time axis as in pre-migration data. 

For this reason, 1D convolutional based methods, whether in 3D or in a time-lapse setting, are not 

optimal for seismic data with more than one dip (e.g. Thore et al. 2012 and Audebert and Agut 2014). 

In this paper, we present an imaging based solution to this problem. Using the 4D Baobab survey, 

offshore Côte d’Ivoire, we compare warping results for time-shifts and time-strains with a 1D 

convolutional and the new image consistent inversion. 

Method 

In order to overcome the limitations of the 1D convolutional model after migration, we could attempt 

a pre-imaging approach such as 4D full waveform inversion, as proposed by Asnaashari et al. (2011). 

This is computationally expensive but worthy of investigation. Our solution, which we call “image 

consistent”, instead continues to operate on depth-migrated data (Khalil and Hoeber 2016, Khalil et al. 

2015a, 2015b). Briefly put (see inset), we reintroduced the concept of seismic image waves, originally 

proposed by Hubral et al. (1996), to define an image domain wave equation. At each depth location 

this equation generates a series of images 

propagated in accordance with the local structure. 

This new axis, which we call “orthogonal time”, 

allows us to perform kinematic and amplitude 

inversions of depth imaged seismic data with 

dipping and complex structures. The method is 

applicable to pre- and poststack data and is easily 

combined with existing inversion and warping 

tools, as we may now use 1D convolutional 

methods along the orthogonal time axis. For 

example, in order to determine the time-shift or time-strain between base and monitor at a certain 

location (x,y) and (z=depth), we propagate both vintages, imaged with the same velocity model, along 

orthogonal time at that location, using the local imaging velocity. We can then apply any existing 

warping or inversion algorithm along this new axis. An intuitive way to understand this procedure is 

to consider it as the answer to the following question: Given the base, how much more or how much 

less do we have to propagate the monitor to achieve optimal 4D time-alignment? Once the time-shift 

and time-strain are determined, they are posted to the un-propagated location (x,y,z) in depth and can 

be displayed and inspected as before. 

Baobab example, offshore Côte d’Ivoire 

The processing area under consideration covers the Baobab field, offshore Côte d’Ivoire. Water 

depths vary from approximately 760m to 1650m with pronounced canyons developing off the shallow 

water shelf area. The structure is a 4-way dip closure formed by the Late Albian unconformity and 

extensional faulting. The reservoir has been subdivided into several stratigraphical units on the basis 

of prominent seismic reflectors. These units have tabular geometry. The Middle to Late Albian 

(Lower Cretaceous) reservoir succession comprises dominantly fine to medium grained thin turbidite 

sandstones interbedded with siltstones and mudstones deposited in a restricted syn-rift seaway 

between the West African Craton and the East Brazilian Microplate.  A complex history of uplift, 

erosion and subsequent sedimentation created a complex overburden, imposing major challenges for 

seismic imaging of the reservoir interval. In addition, approximately 25% of the field area is affected 

by poor imaging due to a number of gas clouds. The two seismic vintages are from 1999 and 2014.  
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Figure 1 4D differences prior to warping. The gas cloud zone is indicated with a blue circle on the 

inline. Top reservoir horizon is shown in green. 

Figure 2 4D differences after warping with conventional (top 2 images) and image consistent 

warping. Both methods achieve very comparable results. 

Figure 3 Time-shifts [s] with conventional and image consistent warping. We see only minor differences. 

Reservoir interval 
affected by gas cloud 
in the overburden
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 Careful 4D processing with regular 4D quality checks was carried out in 2015. The main 4D 

objectives in the context of the analysis shown here were: tracking the oil-water contact and 

identifying bypassed zones and areas of low injection support. Processing challenges were in 

particular: water velocity changes, overburden changes due to gas, and spectral differences in the data 

due to different acquisitions. Processing steps to address these challenges included updating the 

background velocity model with two passes of multi-layer tomography and modelling the gas bodies 

using a combination of FWI, seismic interpretation and velocity scanning. Despite the challenges, the 

final depth-imaged post-stack data that we use in the following time-strain analysis was deemed of 

high quality except in the areas affected by the gas clouds. 

Figure 4 Time-strains obtained with the 1D (top 2 images) and the image consistent warping. Image 

consistent warping is less noisy, more geologically consistent and has higher vertical resolution. 

Figure 1 shows two different views of “raw” 4D differences prior to any warping. The green horizon 

delineates the top of the reservoir. Figures 2 and 3 repeat the same section views as in Figure 1, 

showing 4D differences after warping, and time-shift attributes. Results are shown for the 1D 

convolutional method (top two section displays in each quadrant) and the image consistent warping 

(bottom two section displays). In both cases, warping was computed by a basic cross-correlation 

method, with suitable outlier detection after the attribute calculation.  

Comparing results in Figure 2 we see little, if any, differences by eye in the 4D difference sections. 

Time-shift attributes are also very comparable, as is often the case with the different warping and 

time-shift algorithms. Comparing time-strains however (the time derivatives of the time-shifts), we 

see several effects (Figure 4). Firstly, the image consistent time-strain warping is overall cleaner. This 

is true at the high frequencies, and the 1D convolutional time-strain also has some small low 

frequency noise visible – we attribute this to the dip-dependent stretch effects. Secondly, we see some 

footprint effects when using the 1D convolutional method, mostly to the right-hand side of the 4D 

effects. This is absent when using the image consistent warping approach.  

Figure 5 is a zoom of the two time-strain results around the reservoir area. This shows again that the 

image consistent warping is less noisy, and also has higher vertical resolution. We have verified these 
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results using a variety of alternative warping engines, including non-linear inversions with Tykhonov 

smoothness or layer constraints, and we find the observations to be independent of the algorithm used.  

Conclusions 

The 1D convolutional approach has served us well and is still used today in most  reservoir inversion 

engines. Its underlying assumption, of a dip independent wavelet is, however, false. The real data 

example from the 4D Baobab shows that an image consistent warping method yields a cleaner, higher 

resolution, and more geologically consistent time-strain attribute than the 1D convolutional method.  

Future work will look at coupling the time-strain inversion to the amplitude inversion. 

Figure 5 Zoom of the time-strains for a crossline at an injector. Image consistent time-strains are less 

noisy, have higher vertical resolution and are more geologically consistent. 
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