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Summary 

 

Assessing the uncertainty of the structural information contained in seismic images is critical for reservoir risk 

analysis, namely reservoir delineation, reserve estimation, and well planning. We propose here a distinctive 

approach aimed at assessing structural uncertainties associated with ray-based tomography. While it has some 

similarities with previously published approaches, it is based on the random generation of equi-probable 

tomographic models rather than on randomly sampling the a posteriori “probability density function”. Moreover 

it is associated with non-linear slope tomography which allows consideration of some non-linear aspects of the 

problem. We believe these two aspects offers significant advantages in terms of efficiency and accuracy. In this 

paper we carefully review the concepts and definitions (in particular the notions of confidence region and error 

bars), and then present our approach and discuss its advantages. We finally present an application to a North 

Sea dataset where we estimate structural error bars for a target horizon. 

 



Introduction 
Seismic imaging aims at positioning reflectors in the subsurface from a set of observed reflection 
data. Resulting images are used in combination with other information (e.g. well data) for building 
stratigraphic models of reservoirs. These models allow for reservoir delineation, well planning, and 
evaluation of reserves and production risks. For this the uncertainties from each source of information 
must be considered. Those associated with seismic imaging, especially in the context of velocity 
model building (“velocity” here being meant in the broad sense, i.e. it includes the anisotropy 
parameters) are crucial for positioning migrated structures and have only been investigated recently. 
For example, Duffet and Sinoquet (2006) and Osypov et al. (2008, 2013) investigated the structural 
uncertainties associated with ray-based tomography, the most widely used tool for migration velocity 
model building. These works involve two steps: generation of a set of tomographically consistent 
models, then computation of statistics on structural properties of the images. Several industrial 
applications have been published arousing considerable interest (Osypov et al., 2013). 
Here we propose a new strategy aiming at assessing structural uncertainties associated with ray-based 
tomography. While the goal and the general steps are the same as in Osypov et al. (2013) we have 
developed a distinctive approach: generation of equi-probable tomographic models rather than 
sampling of a “probability density function”. By being associated with non-linear slope tomography 
(Guillaume et al., 2013) the method considers some non-linear aspects of the problem. We first 
present the theoretical frame of our approach, emphasizing the concepts (in particular the notions of 
confidence region and error bars) and its advantages, before presenting an application. 
Tomography probability density function 
Non-linear slope tomography is an essential tool for velocity model building (Guillaume et al., 2013). 
Its input data consists of a set of “invariants” (i.e. source and receiver positions, and time and slopes 
of locally coherent events in the un-migrated domain). The tomography model is described by a set of 
parameters describing smooth velocity and anisotropy layers separated by horizons. The model is 
updated through a non-linear optimization scheme aiming at minimizing the residual move-out. 
Let us consider a final tomography model described here by a vector  of dimension N. In practice 
N ranges from 500,000 to 50 million. Despite the quality of the resolution of the tomographic 
inversion problem, by its very nature  is uncertain as the tomography input data, modeling, and 
constraints contain uncertainties. Bayesian theory considers the related uncertainties in  using the 
concept of probability density functions (PDF). Within the Gaussian and linearized approximation of 
the tomographic forward operator, the PDF, ߩெ෦   takes a around ∆ of a perturbation ,(∆)
Gaussian distribution (Tarantola, 2005) ߩெ෦ (∆) ∝ ݔ݁ ቄ− ଵଶ ெ෪ ା∆ ିଵ ∆ቅ , ெ෪ ିଵ = ࡳିଵାࡳ + ெିଵ . (1) 

The ܰ × ܰ matrix ெ෪ ିଵ
 is called the tomography Hessian. Its inverse is the a posteriori covariance

matrix ெ෪  defined by the combination of the linearized tomographic forward operator in , ࡳ , the 
data covariance matrix containing quality factors,  , and the a priori covariance matrix containing 
model constraints, ெ. It (or more specifically ெିଵ) includes, amongst other contributions, a 
Tikhonov regularization expressed as IN in a basis where all model components have the same units, 
 being the “damping” level. “+” denotes the matrix transpose.  does not necessarily represent the true subsurface velocity or the optimum migration model. It 
represents the maximum-likelihood model, i.e. the most probable model according to the set of data 
and constraints. But many other probabilistically pertinent models exist. ߩெ෦  allows a (∆)
characterization of these models as it provides the probabilities associated with perturbations ∆. 
Definitions 
It is crucial within reservoir risk analysis to give a precise definition of what we mean by uncertainty. 
Uncertainties can be associated with a probability P (or confidence level) and defined as a region of 
the model space such that there is a probability of P that the true model belongs to the region (Cowan, 
1998). One might think to characterize uncertainties through an error bar vector a constructed so as to 
have a given confidence level P that the true model is contained within the domain   ±  This .ࢇ



turns out to be computationally difficult, and is rarely done in the general case to paraphrase Cowan 
(1998, §2.7). Nevertheless uncertainties are sometimes defined through an error bar vector ࣌ 
containing the square roots of the diagonal elements of ெ෪ , called a posteriori standard deviations 
(Duffet and Sinoquet, 2006; Tarantola, 2005). This has a meaning only if the correlations (or non-
diagonal elements of ெ෪ ) are negligible, and even then not straightforwardly in terms of a confidence 
level. This is not suited for tomography where correlations may be large (Duffet and Sinoquet, 2006). 
To overcome these limitations we must define uncertainties through the tomography confidence 
region related to a probability P (Cowan, 1998). Let us consider the region of the model space for 
which the PDF values are greater than a given value, i.e. ߩெ෦ (∆) ≥ ெ෦ߩ Integrating .ݐ݊ܽݐݏ݊ܿ  inside 
this region gives the probability that the region contains the true value of  ∆: 

Figure 1 PDF of a perturbation ∆ (N=2) and 
equi-probable “hyper-ellipsoidal” contour (red).  

ࢋ࢛࢚࢘∆ ݐℎܽݐ ݕݐ݈ܾܾ݅݅ܽݎܲ" ∈ "݊݅݃݁ݎ = ܲ    (2) 
Conversely consider a “centered” region related 
to a confidence level P. The boundary of the 
region is defined by a equi-probable hyper-
ellipsoidal contour of the PDF (ߩெ෦ (∆) ெ෪ ା∆ through (ݐ݊ܽݐݏ݊ܿ= ିଵ ∆ = ܳே(ܲ)  (3) 
where ܳே(ܲ) is the quantile of order P of the 
Chi-square distribution of the N-dimensional 
problem (Cowan, 1998). Resolving equation (3) 
gives the boundary (or “maximum possible”) 
equi-probable perturbations of the P confidence 
region, see Figure 1 for an illustration.  

In the following we use P=68.3% for the confidence region. We call it the standard deviation-like 
confidence region (Messud et al., 2017) because it leads to a standard deviation interval when N=1 or 
when model parameters are non-correlated and considered independently (Duffet and Sinoquet, 2006).  
Generating equi-probable models 
It is easy to show that the solutions to equation (3) will be given by ∆ = ඥܳே(ܲ)࢘ࢾ    ,     ࢘ࢾ ା࢘ࢾ = ା    ,    1 = ெ෪  (4) 

where ࢘ࢾ is a unit random vector allowing to generate the solutions and  is a “square root” of ெ෪ . 
We approximate  through an eigenvalue decomposition (EVD) of the Hessian (Zhang and 
McMechan, 1995) stopped when the eigenvalues have reached the fixed a priori damping level ߝ. Thus ࡰାெ෪ ିଵࡰ ≈ ାࢂ ∆ࢂ + ேࡵߝ  (5) 

where p is the number of eigenvectors above . ࢂ and ∆ contain the p eigenvectors and eigenvalues, 
respectively. Because the EVD cannot mix different physical quantities we introduced the diagonal 
and invertible matrix ࡰ that simply rescales the various physical units in the model space and may 
somewhat compensate for subsurface illumination. Interestingly, ࡵߝே approximates the effect of the 
non-computed ܰ − ேିାࢂேିࢂ ேି assumingࢂ eigenvectors  ே≫ሱ⎯ሮ  ே. After manipulations we obtainࡵ = ௦௩ௗ ௨ି௦௩ௗ + ௦௩ௗ (6)    =  ൫∆ࢂࡰ + ௨ି௦௩ௗ       ,    ାࢂ൯ିଵ/ଶࡵߝ = ேࡵ)ࡰ − ଵ/ଶିߝ(ାࢂࢂ
The method allows to separate the contribution of the uncertainties in the tomographically “resolved 
subspace” (namely the ௦௩ௗ  term related to the model subspace spanned by eigenvectors above 
the a priori damping level) from the total uncertainties (). Equations (4) and (6) allow finding 
solutions of equation (3) by considering various random vectors ࢘ࢾ (of dimension N).  

Error bars for horizons 
In Guillaume et al. (2013) while velocity parameters of the layers are updated tomographically at each 
iteration, horizons are updated by map (or zero-offset kinematic) migration of “horizon invariants”. 



The maximum likelihood horizon, obtained by map migration in , is described by a vector ࢎ 
whose parameters are the depth of the horizon for any surface position. Once the model perturbations 
are obtained, i.e. a set of solutions {∆} of equation (3), we can perform map migrations of the 
horizon for each ∆ to obtain a set of horizon perturbations {∆ࢎ} around ࢎ for statistical analysis.  
To interpret the results let us consider the “linearized approximation” of the horizon map migration 
operator ࡴା: ∆ࢎ ≈ ு෪  The migration PDF is then defined by the a posteriori covariance matrix .∆ ାࡴ = ெ෪ାࡴ  (7)  ࡴ
It contains information on migration uncertainties related to the tomography model used by the 
migration algorithm. Thus we can interpret the set {∆ࢎ} of horizon perturbations, as a set of equi-
probable (and maximum possible) horizon perturbations within the P=68.3% confidence region. 
Let us now define error bars ∆ߠ as the maximum possible depth variations of a horizon parameter 
within the confidence region: ∆ߠ = max{|∆ℎ| }. ∆ࣂ is a depth error bar. Obviously horizons move 
vertically and laterally for each migration in ∆ࣂ∆ . considers the depth “envelope” of all migrated 
horizons and thus also accounts for lateral displacements of migrated points. The true horizon depth 
position belongs to ࢎ  is related to a 68.3% confidence ࣂ∆ with probability P ≥ 68.3%. As ࣂ∆ ± 
level we sometimes call it the z-direction standard deviation-like attribute (Messud et al., 2017). 
Originalities of our method 
Our formal results present similarities with the ones of (Osypov et al., 2013) but we see two major 
novelties. First we propose to sample a PDF’s hyper-ellipsoid contour to obtain equi-probable 
velocity perturbations whereas Osypov et al. (2013) sample the full PDF and derive statistical 
properties from it. Secondly we use our approach within the frame of non-linear slope tomography. 
The first point reduces the sampled space to its most representative “dimensions” in terms of 
uncertainties, thus optimizing the random exploration. Typically we obtain stable depth error bars 
with 200-500 random models, without introducing any preconditioning that reduces the 
dimensionality of the model space (for example, Osypov et al. (2013) use steering filters). Note also 
that restricting the sampled space like this does not hamper the assessment of the uncertainties 
compared to the sampling of the full PDF because the sampled hyper-ellipsoid fully characterizes the 
full PDF (all hyper-ellipsoids are related by a proportionality constant, see equations (3) and (4)). 
Regarding the second point, the use of a non-linear approach based on kinematic invariants, i.e. non-
linear slope tomography, provides an efficient way to assess the quality of the randomly generated 
model perturbations. For example, the cost functions related to the perturbations can be estimated 
automatically and non-linearly allowing the consideration of some non-linear aspects of the problem. 
This shows that a perturbation selection step seems unnecessary with our method as discussed below. 
North Sea data example 
The method is illustrated on a North Sea 
data example where 500 model 
perturbations were generated. Figure 2 
shows, for the 100 first perturbations, the 
non-linearly computed tomography cost 
functions (that become equal to ∆ା ெ෪ ିଵ ∆ up to a constant in the
linear approximation). It is obvious that 
almost iso-cost (i.e. equi-probable) ∆ 
were generated. We observe only limited 
variations around the average cost function 
value of the perturbed models meaning that  

Figure 2 Tomography cost functions related to the 100
first sampled model perturbations (North Sea data).

the linear hypothesis assumed in our analysis is appropriate. Moreover we see that it is not necessary 
to remove non-pertinent perturbations related to too large variations of the cost function.  
Four different surveys (labelled A-D in Figure 3a) have been acquired in the area over time. Each 
survey was shot with a different acquisition direction (illustrated by the arrows in Figure 3a) and its 
own specific recording configuration. 



Figure 3b shows the computed depth error bars of the top chalk. A clear correlation can be observed 
between the illumination map in Figure 3a and the uncertainty map in Figure 3b. Areas with 
overlapping surveys, i.e. multi-azimuth illumination, show lower uncertainties. Lower-fold areas such 
as the rig zone inside survey C result in relatively higher uncertainties correlated to the reduction in 
tomographic ray angular diversity. Also we observe larger uncertainties on the survey edges.  
Only total uncertainties, that tend to highlight the acquisition illumination and structural complexity, 
are shown in Figure 3. The resolved subspace contribution gives complementary information that 
tends to highlight how illumination diversity drives the tomography discrimination capability (Messud 
et al., 2017). 
Conclusion 
We have presented a new strategy for computing uncertainties in tomography models, and translating 
them into the migrated domain. Standard deviations-like attributes on horizon depth positions are 
computed. Our approach is original, in particular the generation of equi-probable models, and allows 
considering some non-linear aspects of the problem.  
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Figure 3 North Sea data Top Chalk horizon attributes: (a) illumination map, (b) total depth error 
bars (z-direction standard deviation-like attribute). Figure from (Messud et al., 2017). 
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