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Bringing multidisciplinary geosciences into 
quantitative inversion: A Midland Basin case study

Abstract
Over the last two decades, the driver behind the boom in 

unconventional reservoirs has been the development of horizontal 
drilling and hydraulic fracturing. More recently, the fall in oil 
prices has resulted in the industry refocusing on the shale market 
and its most pro�table plays, a notable example being the Permian 
Basin. We argue that this refocusing should also take place in the 
technology domain and that seismic and its derivatives should 
provide reservoir and completion engineers with the means to 
optimize well planning. �is is illustrated with a case study of an 
advanced quantitative interpretation work�ow tailored for a seismic 
multiclient program in the Wolfberry Play of the Midland Basin. 
Seismic imaging begins by providing a structural interpretation 
basis, then quantitative interpretation provides 3D elastic and 
geomechanical attributes through prestack inversion and azimuthal 
inversion, respectively. �is 3D canvas of elastic attributes is 
combined with petrophysical, mineralogical, geomechanical, and 
geochemical properties measured at the wells. �e challenge of 
reconciling such data sets with di�erent scales and spatial sampling 
is overcome using physical, empirical, or statistical relationships 
within the data. �e adjunction of rock data to the 3D elastic 
attributes provides calibration and validation of the inversion 
results. More interestingly, it allows for quantitative prediction 
of lithology, facies, porosity, and geochemical properties away 
from the wells. �e purpose of the resulting calibrated reservoir 
model is to assist in optimizing drilling plans and executing 
completion designs.

Introduction
�e Midland Basin is located on the eastern edge of the 

Permian Basin (Figure 1). Although the structure of the subsurface 
is relatively �at, the geology is far from simple as the surveys 
overlay the Eastern Shelf of the basin in the east and the Horseshoe 
Atoll in the north. �e formations of interest, the Spraberry and 
Wolfcamp, are commonly referred to as the Wolfberry Play. 
Figure 1c displays a simple stratigraphy of the area. �e depth of 
the zone of interest ranges from 6000 to 8000 ft, which corresponds 
roughly to 1.1 to 1.5 s in two-way seismic time. In this paper, we 
discuss the speci�c implementation of a multidisciplinary geosci-
ence work�ow for quantitative interpretation of the Spraberry 
and Wolfcamp unconventional plays. �e Hobo/Gypsy multiclient 
programs discussed here were acquired in 2016 and 2017 in two 
phases and span 500 mi2 in Howard and Martin counties, Texas.

To image these formations, seismic data acquisition is widely 
used, providing 3D coverage of the subsurface. Traditionally, 
seismic data have been used in horizon interpretation for identify-
ing structure and computing various seismic attributes related to 

Olivier Winter1, Ahmed Mohamed1, Anna Leslie1, Gabino Castillo1, Hassan Odhwani1, Trevor Coulman1, Francisco Brito1, Adriana 
Perez1, Vishnu Pandey1, Cesar Marin1, and Chi Vinh Ly1

phase, frequency, and amplitude. �ese attributes are used for 
mapping the extent of reservoirs away from wells with a greater 
degree of certainty.

With the availability of full-o�set data and survey aspect ratios 
approaching unity, combined with a carefully designed processing 
sequence, seismic data are not only being used for amplitude 
variation with o�set (AVO) analysis for detection of hydrocarbons, 
but also for amplitude variation with azimuth (AVAz) analysis 
that relates to fractures and geomechanical properties. AVO/AVAz 
simultaneous inversion is based on the Knott and Zoeppritz for-
mulation, which states that variation of the re�ectivity with the 
angle of incidence is a function of elastic properties of the layers 
above and below the interface. Simultaneous inversion produces 
elastic properties over the seismic volume at seismic resolution.

In addition, the Permian Basin’s rich history (oil was �rst 
struck in the Midland Basin in 1921) provides a wealth of drilling-
related geologic information. Using wells that have wireline logs 
available, it is common to build a petrophysical model of each 
formation using the rock sample data as calibration and validation 
points. In this study, by collecting rock samples from the wells 
with wireline data available, mineralogy and geochemistry data 
for each formation can be related to the wireline in the petrophysical 
model and provide richer information on mineralogy and organic 
content (Peake et al., 2014). �is multidisciplinary framework, 
combined with 3D elastic volumes from the seismic inversions, 
can help in predicting rock properties away from the well logs.

�e �rst section of this paper describes the building of the 
petrophysical model, the novelty of our application lying in the 
inclusion of mineralogical and geochemical data during this 
process. �e second section describes the seismic methods, explain-
ing the salient features of acquisition and processing that will lead 
to stable and trustworthy isotropic and anisotropic inversion 
products. We explain how prior information and petrophysics can 
be used to improve initial models and for validation during this 
phase. �e last section will describe and further discuss the 
integration of the two previous phases in the presence of mineral-
ogy and geochemical information. Di�erent interpretation and 
data analytics techniques provided 3D volumes of engineering-
oriented attributes such as geologic facies, porosity, brittleness, 
and organic content maturity and quality. �ese attributes assist 
in the optimal planning of well location, orientation, and comple-
tion for maximum return on investment.

Geology and rock physics
Rock samples. During the early stage of the work, core samples 

and cuttings were gathered along with borehole wirelines. Tra-
ditionally, X-ray di�raction analysis (XRD) of core plugs would 
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be collected; later we describe how cuttings can yield further 
mineralogical and geochemical information.

Mineralogy. As cuttings samples are usually collected as part 
of the drilling process, and there are fewer cores being drilled in 
the United States, it is easier to collect geographically distributed 
cuttings material rather than cores to increase understanding of 
geologic heterogeneity in the survey area. �e analysis of approxi-
mately 500 ditch-cuttings samples was carried out using a RoqScan 
instrument, which is an automated mineralogical analysis tool. 
�e instrument is based on a mobile scanning electron microscope 
(SEM) with a built-in energy dispersive spectrometry (EDS) 
detector to provide elemental analysis. SEM-EDS applied to 
mineralogical analysis uses a motor-driven stage in an SEM 
equipped with one to four EDSs. �e SEM-EDS used at the well 
site is a rugged version of this technology, using specialized 
hardware and software to generate elemental compositions at 
speci�c points on samples. Pixel-by-pixel image analysis and EDS 
chemical signatures from the SEM platform provide spatially 
resolved mineral speciation. �is provides data at �ner resolutions 
than bulk analysis techniques (XRD and X-ray �uorescence), 
which irradiate a large surface area of the sample, yielding a 
cumulative response (Ashton et al., 2013). 

Samples were prepared by solvent removal of volatile hydro-
carbons and low-temperature drying. �e cleaned and dried 
samples (cuttings or core) were mounted in an acrylic sample 
holder, ground �at with 1200 grit in water or alcohol, then sputter 
coated with a layer of carbon under vacuum. �e viscosity of the 
acrylic in which the cuttings were immersed was su¦cient to 
prevent settling and ensured that the analyzed surfaces were 
randomly oriented. Electron beams generated in the SEM’s 
vacuum chamber imaged the sample and generated the elemental 
composition data. Topography-sensitive secondary electrons, 
generated as the electron beam strikes the sample surface, were 
collected by the detector for computer imaging. X-rays generated 
during scanning are characteristic of the elements from which 
they were generated, providing a qualitative atomic composition 
of the sample. A dictionary listing of mineral phases with associ-
ated elemental suites was then utilized to associate the 

concentration amount of the analyzed specimens to a mineralogy 
type, and this was provided for each sample in the analysis and 
plotted against the well logs for calibration.

�e mineralogical data generated from the cuttings were then 
used to derive a brittleness index as per the Jarvie et al. (2007) 
formulation. �e results from this calculation showed the 
Wolfcamp C Formation to consistently be the most ductile due to 
higher clay content in the lower portion of the formation. �is 
signi�cant change in the mineralogy and calculated ductility is a 
clear marker for the shift from the Wolfcamp C carbonate rock 
into a clastic rock type. �e brittleness of the other Wolfcamp and 
Spraberry zones are closely correlated to the carbonate component 
in these formations. �e mineralogical data were then used to help 
constrain the log-derived petrophysical mineral model, such that 
the �nal log-derived mineral model is ground truthed.

Additionally, a high-resolution photomicrograph was gener-
ated from each sample analyzed, which allowed for examination 
of the rock fabric and texture as well as the pore size, shape, and 
structure to be quali�ed. �e rock texture data were then used to 
constrain and understand the wireline log data and possible rock 
e�ects on the quality of the logs for editing purposes.

Geochemistry. Geochemical attributes are the second kind of 
data we recovered from rock samples for this survey. Geochemical 
evaluation and petroleum system modeling (1D) were part of the 
integrated work�ow for seismic reservoir characterization as shown 
in Figure 2. �e information available from di�erent wells was 
combined with the data derived from geochemical analyses per-
formed on cuttings and core samples collected from wells across 
the study area. �ese analyses included total organic carbon (TOC) 
determination, pyrolysis, and organic petrography (re�ectance 
measurements). �is provided insight into the source rock quality 
across the study area and, through 1D petroleum systems modeling, 
allowed the thermal evolution of the Wolfcamp and Spraberry 
formations to be evaluated within the study area. �is new integra-
tion was performed for the following purposes: (1) to evaluate the 
geochemical properties of the Wolfcamp and Spraberry formations 
and integrate these into the petrophysical model (TOC values);  
(2) to improve the understanding of hydrocarbon generation at 

Figure 1. (a) Map of the Permian Basin and its subdivision in the Delaware and Midland basins, from U.S. Energy Information Administration. (b) Position map of the 
seismic acquisition layout. (c) Simplified stratigraphy of the Midland Basin.
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di�erent well locations across the study area; (3) to predict geo-
chemical properties away from the wells by the integration of 
geochemical data and seismic attributes from inverted volumes; 
and (4) to contribute to the understanding of the hydrocarbon 
potential of the Wolfcamp and Spraberry formations.

Organic rock properties like TOC were integrated into the 
petrophysical model by conversion of the TOC to the equivalent 
in kerogen volume. �is data helped to establish the mineral 
volume for further analysis. 1D basin modeling led to improved 
understanding of hydrocarbon generation at di�erent well locations 
across the study area. From this analysis we obtained calibrated 
maturity curves from eight well locations.

Overall, the organic properties of the Wolfcamp and Spraberry 
formations in most of the wells evaluated were shown to be of 
good quality for generating hydrocarbons based on TOC, S2, 
and hydrocarbon index (HI) values. Di�erent intervals from the 
Wolfcamp Formation (A, B, C, and D) showed a TOC average 
ranging from 1.74 to 6.47 wt% (weight percentage average by 
intervals), and the highest values were most often obtained in 
Wolfcamp A and D. �e Spraberry Formation showed TOC 
value averages ranging from 1.28 to 4.11 wt%, and the highest 
values were most consistently obtained in the Upper Spraberry 
Formation. A change in the HI values index was observed between 
the Spraberry and Wolfcamp formations. Overall, the highest 
values (better quality–oil prone) were displayed in the Spraberry 
Formation, though both the Wolfcamp and Spraberry formations 
showed a maturity level within the oil window, con�rming the 
intervals as shale oil plays in the survey. In most of the wells 
evaluated, the Wolfcamp Formation indicated early to peak 
maturity stage, and early maturity stage for the Spraberry Forma-
tion. �e maturation process decreased the original organic 
properties of the evaluated formations. �erefore, the measured 
values represent the remaining properties of the organic matter.

Petrophysics. Petrophysics includes not only conventional 
estimation of complex mineralogy, porosity, and water saturation, 
but also integration with core and cuttings data, pore pressure 
analysis, and rock physics reconstruction of compressional and 
shear (P and S) sonic logs for evaluation of geomechanical 

properties, elastic properties, and seis-
mic well ties. Out of 16 wells used to 
tie the seismic, �ve contained the high-
quality data required for calibration 
points within the study area. �ese 
included dipole sonic logs, conventional 
core analysis, including XRD, and on 
seven of the wells, cuttings were gath-
ered and analyzed speci�cally for this 
study. Edited logs were used in all 
phases of the study, and synthetic logs 
were generated to enhance sparse data 
sets, particularly in those wells lacking 
S-sonic data.

Cuttings provide mineralogical 
control for wells lacking core data and 
were also used to verify existing XRD 
data in key wells. In addition, the cut-
tings provided textural information 

through analysis of pore geometry, and they were linked to geo-
mechanical properties through generation of a brittleness index 
and to the geochemical properties via organic proxies from trace 
elements. In data-poor wells, cuttings sampled every 30 ft provided 
average mineralogy trends, which were matched with the petro-
physical evaluations of lithology.

Using a combination of matrix inversion and maximum 
likelihood estimation (Mitchell and Nelson, 1988), mineralogy 
was estimated from the simultaneous solution of well log response 
equations with uncertainties assigned to each input. Di�erences 
between input well logs (gamma ray, density, neutron, photo-
electric factor, and resistivity) and curves reconstructed from 
mineralogical outputs were minimized. As suggested by available 
control, volumes for major constituents (clay, quartz, calcite, 
pyrite, and kerogen) were generated, while minor components 
were ignored. For the kerogen volume, the estimation is compared 
to estimates of TOC from core analysis and from Schmoker 
(1979) to ensure it was reliable. �e lithologic model also esti-
mated total and e�ective porosity and used modi�ed Simandoux 
(1963) to obtain water saturation (Poupon and Leveaux, 1971). 
Rock physics, in the form of the self-consistent model (Berryman, 
1980), was then applied to these volumes to match P- and S-sonic 
data in control wells, followed by application of the calibrated 
model to wells lacking sonic curves. P- or S-sonic logs were not 
used in lithology estimation, thus avoiding circular logic in 
reconstructing these curves. Rock physics increases the number 
of wells available for well ties, seismic inversion, and geomechani-
cal modeling, and also provides a �nal check of prior editing. 
Figure 3 shows a crossplot of VP /VS as a function of P-impedance 
for seven lithotypes identi�ed in the Wolfcamp and Spraberry 
formations. �e cuto� applied for a given lithotype is unique to 
each geologic interval.

Pore pressure prediction represents an integral part of stress 
analysis in conjunction with isotropic and azimuthal inversion 
and is also utilized in geomechanical modeling. Integration of 
bulk density gives vertical stress (σV), while pore pressure provides 
the means of �nding e�ective stress. Elevated pore pressure (in 
excess of hydrostatic pressure) is found from trend analysis of the 

Figure 2. Simplified workflow used in the Permian Basin for multiattribute analysis.



176      THE  LEADING EDGE      March 2018 Special Section: The Permian Basin

P-sonic log, using a variant of Eaton’s 
(1976) method. Assuming horizontal 
transverse isotropy (HTI), horizontal 
stresses and normal compliance were 
calculated as a function of Poisson’s ratio 
and Young’s modulus, using isotropic 
and azimuthal inversion outputs (Gray 
et al., 2012).

Seismic: Acquisition, processing, 
and quantitative interpretation

After having collected rock physics 
data, the second piece of the puzzle is 
the seismic technique itself. Here we 
describe (1) the aspects of acquisition 
and processing that have the greatest 
impact on reservoir interpretation; (2) 
the reservoir preconditioning, a crucial 
part of the transition between imaging 
and interpretation; and (3) the isotropic 
and azimuthal inversions.

Acquisition and amplitude-preserved imaging. Early on, in 
the design phase, special care was given to acquire su¦cient inline 
and crossline o�sets so that all azimuths would feature angles of 
incidence of 40° or more. We obtained the most reliable estimation 
of incidence angles for a given o�set through ray tracing using 
P-sonic logs in the area of interest. Receiver and shot spacings 
were selected according to the Fresnel zone at the shallowest 
targets and based on studies of previous data to identify the 
maximum frequency expected at these levels. Full acquisition 
parameters and methods are described by Coulman et al. (2017). 
Low-frequency signal is important for quantitative interpretation 
(Yates et al., 2016), so special care was taken by using a broadband, 
nonlinear vibrator sweep starting at 3 Hz and by accounting for 
geophone and instrument responses prior to deconvolution.

�e seismic imaging sequence was optimized to deliver data 
ready for reservoir interpretation. Statics were derived using a 
tomographic model of the near surface computed from �rst arrival 
times. �e surface wave noise, “ground roll,” was adaptively 
removed using local spatial transforms with true geographic 
coordinates that take into account the nonuniformity of seismic 
sampling on land. A surface consistency constraint was applied 
on scaling, deconvolution, and residual statics computation. Prior 
to migration, the volume was 5D interpolated onto a denser grid 
to provide uniform o�set-vector tiles (OVT) for the migration. 
�e main goal of the interpolation was to provide a regular OVT 
basis for the migration algorithm. Using OVT domain migration 
ensured that the data were migrated in an o�set- and azimuth-
compliant manner. To reconstitute accurate amplitudes for all 
azimuths, the migration used a time-domain orthorhombic 
algorithm, accounting for VTI and HTI anisotropic e�ects 
(Wang and Wilkinson, 2012). After migration, each OVT 
contained a single-fold volume that had a unique source-to-
receiver vector o�set. �is was the ideal domain in which to begin 
reservoir preconditioning.

Preconditioning for quantitative interpretation. �e Spra-
berry and Wolfcamp horizons are sandwiched between two 

harder layers, the Clearfork on top and the Canyon/Strawn 
below. �e top layer acts as a strong multiple generator. In 
addition, there is relatively little impedance contrast within the 
reservoir layers, leading to low re�ectivity. Coupled with this, 
the seismic multiples generated from the bounding lithologies 
within the reservoir layer are particularly severe and make 
imaging the reservoir itself quite problematic, as seen in Figure 4. 
A 3D multiple attenuation module was used to split the gathers 
into six azimuths and run multiple attenuation on the individual 
azimuths in the tau-p domain. When looking at the common-
depth-point (CDP) gathers, moveout of 80 ms in the negative 
direction (up) and 80 ms in the positive direction (down) is 
considered to be interfering multiples.

Amplitude tomography compensates for the amplitude (energy) 
loss caused by seismic attenuation. A tomographic inversion 
approach using depth-domain image gathers can be utilized to 
compensate for amplitude loss in re�ection data due to attenuation. 
At this stage, the common-o�set-vector domain data were pro-
jected to the angle/azimuth domain. Next, curvelet-domain noise 
attenuation was employed to attenuate noise in the angle-azimuth 
domain. Small residual moveout may still be present in the data 
after prestack time migration (PSTM), which can be corrected 
by the application of time-variant trim statics. Trim statics compute 
the crosscorrelation between an individual trace within a CDP 
and its pilot (usually a stack of the traces in the CDP). �is helps 
improve gather �atness beyond that which anisotropic PSTM 
can produce. Here, time-variant trim statics were computed on 
azimuth angle gathers, as prestack inversion requires �at gathers 
after normal moveout, otherwise slope and intercept attributes 
are contaminated. Wavelet transform-based resolution enhance-
ment incorporates structural conformity constraints and sparse 
regularization into an inversion-based deconvolution. �is method 
provides a resolution-enhanced, broader bandwidth image with 
improved signal-to-noise ratio and geologic coherence. A prestack 
conformal method was used in this case to preserve the AVAz 
response. �e module maintains the measured AVAz response 
throughout the process.

Figure 3. VP/VS ratio versus P-impedance crossplots for lithotypes within the Wolfcamp and Spraberry formations. 
Cutoffs are formation dependent.
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At each of the aforementioned steps in the preconditioning, 
AVO compliancy was checked by computing crosscorrelations 
between synthetic gathers computed from sonic logs and the 
actual seismic gathers at the well head location, to ensure this 
process was not detrimental to the correlation coe¦cient. Figure 4 
shows an example of a prestack well tie with a synthetic versus 
actual seismic comparison before and after preconditioning. Other 
AVO-speci�c prestack controls were implemented, using gradient 
and intercept attributes as described by Lacombe et al. (2017).

Isotropic inversion. Prestack seismic inversion for elastic 
properties leads to increased resolution through removal of tuning 
e�ects. Another bene�t is the conversion of interface properties 
such as re�ectivity to layer-based properties: P-impedance, 
S-impedance, and VP /VS, which are absolute values and therefore 
easier to interpret. �e inversion used a constrained sparse spike 
inversion (CSSI) algorithm (Russell and Hampson, 1991). �e 
CSSI inversion is absolute and therefore requires a low-frequency 
model (LFM) to �ll the low-frequency gaps, which are not present 
in the seismic data. �is is why the recovery of low-frequency 
signal through acquisition and processing was emphasized before: 
to reduce reliance on the LFM and let the seismic �ll more of the 
gap (Yates et al., 2016). In this case, low frequencies in the data 
were present to 3 Hz. �e inversion is usually done within a limited 
time range, allowing the assumption of a stationary wavelet. In 
this case, the inversion window was de�ned from the Clearfork 
Formation to the Canyon Formation (Pennsylvanian in Figure 1) 
to encompass the zone of interest.

During the inversion, the forward modeling requires wave-
lets. For this work, one wavelet was extracted for each of the 
�ve angle stacks. �e LFM generation and wavelet extractions 
were supported by well-to-seismic ties, as shown previously in 
Figure 4. Figure 5 shows the section view of absolute P-imped-
ance, S-impedance, and VP /VS ratio volumes overlaid with well 

Figure 4. Prestack well tie (a) before conditioning and (b) after conditioning. From 
left to right, seismic angle gather, synthetic angle gather, correlation coefficient, 
and P-impedance. The overall correlation coefficient increased from 67% to 78% 
after conditioning.

Figure 5. AVO simultaneous inversion output sections. (a) P-impedance, (b) S-impedance, (c) VP/VS ratio. Well log measurements are superimposed at locations denoted by stars.
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mu rho, and Poisson’s ratio volumes for use in geomechanical 
and multiattribute analysis.

Azimuthal inversion. We expanded isotropic seismic inver-
sion by using an anisotropic inversion method to obtain quantita-
tive attributes related to reservoir stress and fractures. Reliable 

AVAz characterization requires wide-
azimuth data acquisition and ampli-
tude-preserved processing, as described 
in the acquisition and processing sec-
tion earlier. Unlike previous work�ows, 
this new inversion technique was used 
to estimate layer-based stress and frac-
ture parameters by deriving e�ective 
elastic parameters within an angle 
azimuth range to mimic the behavior 
of anisotropic re�ection when used in 
isotropic modeling and inversion.

As in the isotropic case, the azi-
muthal AVO inversion estimates only 
fractional band-limited, relative elastic 
parameters from seismic and requires 
the anisotropic low-frequency compo-
nent in order to obtain the full-band, 
absolute solution. �e availability of 
cross-dipole measurements from bore-
holes was too sparse to extrapolate an 
LFM over the survey, so we used the 
work�ow proposed by Mesdag and 
Quevedo (2017). At �rst, isotropic 
inversions were run on each azimuth 
sector with the isotropic LFM. �en 
we calculated the azimuthal e�ective 
elastic parameters and their corre-
sponding Fourier coe¦cients over 
VP /VS anisotropy. �e low-frequency 
component is deduced from this �rst-
pass inversion for each of the six azi-
muthal sectors, and the inversion was 
then run a second time, with low 
frequencies in the azimuthal sense, to 
provide a full-band solution. With the 
anisotropy magnitude and orientation, 
assuming the linear slip theory of 
Schoenberg and Sayers (1995) and the 
penny-shaped crack model (Hudson, 
1980), it is possible to compute the 
fracture weaknesses, fracture density, 
and fracture strikes.

Figure 6 shows output of the AVAz 
inversion: the minimum horizontal 
stress and the maximum horizontal 
stress resulting from the combination 
of AVA and AVAz outputs. Figure 6c 
shows the distribution of the inverted 
fracture orientations matching the 
distributions of orientations measured 
from formation microimager logs (FMI) 

Figure 6. (a) Minimum horizontal stress and (b) maximum horizontal stress obtained through AVAz inversion. (c) 
Validation: the orientation of fractures obtained by AVAz (bottom in red) match the orientations found at the well on 
FMI (top in blue and green).

Figure 7. (a) Most probable facies section and (b) the probability of the most probable facies sections.

logs. As validation, we computed the correlation coe¦cient 
between the inversion output and the measured values at the 
wells, giving overall correlation coe¦cients of 94%, 93%, and 
89%, respectively, for P-impedance, S-impedance, and VP /VS 
ratio. We then transformed these attributes into lambda rho, 
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and serves as a validation of the result. �e Spraberry Formation 
on top shows consistent fracture-induced anisotropy, the Wolfcamp 
Group below does not exhibit such consistent stress-induced 
anisotropy. �is was con�rmed on the two cross-dipole well logs 
we had available.

Integration
Following the individual rock physics and geophysical inversion 

sections of the project, we merged the geologic and geophysical 
products into a data set that has the potential to provide 3D 
reservoir attributes away from the well control points. A �rst 
example consists of a Bayesian facies predictor using the petro-
elastic cuto�s de�ned in the petrophysical analysis. A second 
application described here is the extrapolation of rock properties 
away from the wells using multiparameter regression analysis.

Facies prediction. We predicted seismic facies using elastic 
properties from the simultaneous inversion. �e accuracy of the 
prediction depends on the separation of wireline log facies in the 
elastic domain at seismic resolution. In this study, six discrete 
facies were categorized based on di�erent petrophysical cuto�s. 
Separations of facies were identi�ed by crossplotting various 
combinations of elastic properties in a 2D domain using di�erent 
geologic interval-bounded seismic horizons as shown in Figure 3.

P-impedance and VP /VS crossplots showed relatively higher 
separation between facies than other attribute combinations. 
However, some facies still show overlap in the elastic domain. 
�erefore, multivariable probability density functions (PDFs) of 
P-impedance and VP /VS for each lithology were computed in each 
geologic interval. �ese PDFs and prior probabilities were applied 
on inverted P-impedance and VP /VS volumes using a Bayesian 
framework. �is approach gave posterior probability volumes for 
each discrete facies. Since it is important for the interpreter to 
grasp the uncertainty associated with the facies prediction, we 
output a probability volume for each facies. A section view of the 
most probable facies volumes is shown in Figure 7, along with its 
probability at each sample.

Multiattribute analysis. Multiattribute analysis predicts 
well log properties away from wells in the survey area from 
inverted properties obtained from seismic. �ese and their 
byproducts are referred to as 3D attributes. �e analysis data 
consist of a series of training well logs tied to 3D seismic and 
elastic attribute volumes. �e target logs theoretically may be 
of any type; however, the greatest success to date has been in 
predicting porosity logs. �e objective is to derive a multiattribute 
transform, which is a linear or nonlinear transform between a 
subset of the attributes and the target log values. Once a relation-
ship is found on the well logs, we compute a 3D volume attribute 
using the seismic inversion volumes.

In this case, an arti�cial neural network (ANN) was used 
for the attribute analysis along with standard quality control and 
calibration between seismic and well data. �e selected subset 
of attributes used for prediction, the features set, is determined 
by a process of forward stepwise regression, which derives increas-
ingly larger subsets of attributes. Prediction error always decreases 
as more and more attributes are added to �t the training data. 
However, this may not be related to an increase in prediction 
accuracy but may mean that the ANN is over�tting the data as 

too many attributes are provided for the amount of data. To solve 
over�tting, we used conventional cross-validation techniques by 
setting aside some data during the training phase. Once the 
training is performed, the prediction quality is assessed on this 
validation data subset. We then displayed the cross-validation 
error and prediction error as a function of the number of attributes. 
�e cross-validation error decreases at �rst and starts increasing 
again; this means we had reached the optimal number of features 
and over�tting starts to occur, as shown in Figure 8. However, 
some attributes may not exhibit a reliable predictability. In terms 
of quality control, it translates into a �at error curve on the 
training set and a poor correlation at the validation points. �is 
was the case for TOC in this survey. �is may be because the 
training should be distinct for each geologic layer or at the very 
least distinct for the Wolfcamp and Spraberry, but doing so 
involved splitting the training data sets in subsets too small for 
multiattribute regression. 

Figure 8. Nonlinear regression quality controls. (a) Brittleness crossplot and 
(b) hydrogen index and their statistical correlation values. (c) Brittleness cost 
functions for the training subset and the cross-validation subset of input features. 
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geophysicists and petrophysicists working in the same domain 
to provide more accurate reservoir mapping. 
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