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Theory-guided data science-based reservoir prediction 
of a North Sea oil field

Abstract
Data science-based methods, such as supervised neural net-

works, provide powerful techniques to predict reservoir properties 
from seismic and well data without the aid of a theoretical model. 
In these supervised learning approaches, the seismic-to-rock 
property relationship is learned from the data. One of the major 
factors limiting the success of these methods is whether there 
exists enough labeled data, sampled over the expected geology, 
to train the neural network adequately. To overcome these issues, 
this paper explores hybrid theory-guided data science 
(TGDS)-based methods. In particular, we build a two-component 
model in which the outputs of the theory-based component are 
the inputs in the data science component. First, we simulate many 
pseudowells based on the well statistics in the project area. The 
reservoir properties, such as porosity, saturation, mineralogy, and 
thickness, are all varied to create a well-sampled data set. Elastic 
and synthetic seismic data are then generated using rock physics 
and seismic theory. The resulting collection of pseudowell logs 
and synthetic seismic data, called the synthetic catalog, is used 
to train the neural network. The derived operator is then applied 
to the real seismic data to predict reservoir properties throughout 
the seismic volume. This TGDS method is applied to a North Sea 
data set to characterize a Paleocene oil sand reservoir. The TGDS 
results better characterize the geology and well control, including 
a blind well, compared to a solely theory-based approach (deter-
ministic inversion) and a data science-based approach (neural 
network using only the original wells). These results suggest that 
theory and data science can complement each other to improve 
reservoir characterization predictions.

Introduction
Machine learning algorithms employing neural networks 

have been used for some time in geophysics to quantitatively 
predict elastic and rock properties from seismic data (Hampson 
et al., 2001). These supervised learning techniques derive a statisti-
cal relationship between the log and seismic data at the well 
locations. This relationship is then applied to the seismic data to 
estimate the log properties at other locations in the seismic survey. 
The limiting factor in performing this analysis is that sufficient 
labeled data (i.e., well control) are needed to train and validate 
the relationship. More recent neural network architectures, such 
as deep neural networks (DNNs) (Goodfellow et al., 2016), have 
been adapted for geophysical reservoir characterization. Downton 
and Hampson (2018) use a DNN, while Zheng and Zhang (2018) 
and Das et al. (2019) use convolutional neural networks (CNNs) 
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to predict elastic parameters. These networks place even greater 
demands on the amount of data necessary to perform the analysis. 
The image-recognition CNN of Krizhevsky et al. (2012) is trained 
using millions of labeled images. The training wells available in 
typical geophysical reservoir characterization projects number in 
the tens rather than millions. Halevy et al. (2009) show that 
increasing the amount of data is often more important than the 
choice of algorithm, which is why this paper focuses on how to 
deal with this lack of training data. 

Many different approaches have been taken to increase the 
amount of training data. K. Wang et al. (2019) perform a series 
of transformations on the labeled data to increase the amount 
available. Y. Wang et al. (2019) use a 1D cycle-consistent genera-
tive adversarial network to help stabilize the problem. Downton 
and Hampson (2018), Zheng and Zhang (2018), and Das et al. 
(2019) all generate synthetic data to increase the amount of 
training data. A number of important considerations determine 
whether there is enough training data. First, there needs to be 
sufficient data to calculate statistically reliable operators in the 
presence of noise. Second, in order to derive relationships that 
generalize satisfactorily, the well data need to sample the range 
of the expected geology for the project area. For example, to 
predict the fluid saturation, both hydrocarbon- and brine-filled 
training examples are needed. If only brine-filled reservoir 
examples are available, an interpreter might perform fluid sub-
stitution and amplitude variation with offset (AVO) modeling 
to understand the seismic response to the other fluid. Other 
important variables such as the reservoir thickness, porosity, 
and mineralogy can also be varied to understand their responses. 
These all complicate the mapping between the seismic and the 
desired reservoir properties, often in a nonlinear and nonunique 
manner. In this way, rock physics and seismic theory can be used 
to create training data that span the range of the expected 
geology. This is the approach of Downton and Hampson (2018) 
and of this paper. Methods that solely transform the original 
labeled data or are based on the statistics of the original labeled 
data do not address this second consideration. 

This use of theory to generate training data within a data 
science methodology is a form of hybrid theory-guided data science 
(TGDS) (Karpatne et al., 2017) and hence is the terminology 
adopted by this paper. The theory component consists in using 
rock-physics relationships to simulate a large idealized set of 
pseudowell logs and AVO modeling to generate synthetic gathers, 
which we will refer to as the synthetic catalog (Dvorkin et al., 
2014). This synthetic catalog, which contains both the target log 
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property and input seismic attributes, is then used to train and 
validate the DNN. Finally, the trained DNN is applied to the 
real seismic data set on a trace-by-trace basis to obtain 3D estimates 
of elastic and petrophysical properties. 

In this paper, we first describe the key steps used in generating 
the synthetic catalog. Then, we describe the DNN training and 
validation process. Finally, we show elastic and petrophysical proper-
ties estimated by applying the DNN. The TGDS method is dem-
onstrated on a North Sea commercial oil field data set. The analysis 
is focused on Paleocene reservoirs located in remobilized injectite 
sands cross-cutting various stratigraphies at steep angles. Those 
injectite sands, although difficult to image, could provide well-
connected, high-porosity, and high-permeability reservoirs. To 
evaluate the robustness of the methodology, we compare the TGDS 
results at a blind well location to those obtained by deterministic 
inversion and by a data science-based approach in which the DNN 
is solely trained using the original well control. In both cases, the 
TGDS results are more consistent with the geologic control. 

Synthetic catalog generation
The synthetic catalog is composed of a series of pseudowells 

and synthetic seismic gathers. To make the synthetic pseudowells 
realistic, we use prior geologic knowledge of the area to model 
various “what-if ” scenarios. We also perform a detailed statistical 
analysis of the available well control. Typically, the statistics of 
each well are nonstationary, so each well is broken up into a 
series of layers, or lithofacies, that share common rock property 
statistics. The resulting statistical parameterizations are then 
used to simulate rock property values. Rock physics and seismic 
theory are used to model the corresponding elastic and seismic 
data for each pseudowell. This requires the interpreter to choose 
a rock-physics model (RPM) appropriate to the project area and 
then to calibrate it using the available well control. It is important 
that the chosen RPM accurately reconstructs the density, P-wave, 
and S-wave velocity logs so that we have confidence that the 
RPM generalizes well to other combinations of rock properties 
not sampled by the original well control. The use of the RPM 
necessitates performing a petrophysical analysis of the well-log 
data to supply the necessary input. In summary, the key steps 
in generating the synthetic catalog are: 

1) performing a petrophysical analysis to generate the rock 
properties necessary for the RPM

2) selecting and calibrating the RPM
3) determining the nonstationary well-log statistics, which 

requires breaking up each well into a series of lithofacies and 
then determining their statistical parameterization 

4) generating a series of pseudowells based on the previous 
analysis, where the rock properties are simulated based on 
the statistical analysis while the elastic properties are calculated 
using the calibrated RPM 

5) calculating seismic gathers for each pseudowell 

Ideally, this workflow should be applied to all the wells in a 
study area, but there are always data and human constraints. In 
order for the wells to be analyzed, they need to have the appropriate 

data logged (e.g., S-wave logs), and the data need to be of a suf-
ficient quality. The petrophysical analysis takes time and again 
limits the number of wells analyzed. Given these constraints, we 
select a subset of the wells to analyze. Ideally, we want to choose 
wells that capture the natural variability of the reservoir in the 
study area (e.g., different fluids, porosity, clay volume, etc.). Note 
that the synthetic catalog will be used to train the DNN and 
derive the relationship between the seismic and well data so that 
the analyzed wells do not need to directly tie with the seismic. 
For the North Sea example, we analyze four wells. An additional 
well is reserved to serve as a blind test of the methodology. 

Petrophysical analysis. To generate realistic synthetic log data, 
a petrophysical analysis is first performed to calculate the necessary 
input to the RPM, such as porosity, clay volume, and water satura-
tion. The petrophysical analysis needs to identify and correct 
spurious log measurements on all the logs used in the following 
workflow, including the density, P-wave, and S-wave velocity 
logs. Smith (2011) summarizes some important considerations 
in performing a petrophysical analysis with the goal of seismic 
reservoir characterization. 

RPM calibration. Next, we establish the RPM linking the 
calculated petrophysical properties to the elastic properties. The 
choice of the RPM largely depends on its effectiveness, which 
includes the ability to calibrate the model, using easily acquired 
data and observations, and the ability to use it in reverse modeling 
to accurately predict petrophysical properties of interest from 
elastic properties (Mur and Vernik, 2019). For this study, we use 
a granular model that combines Hertz-Mindlin contact theory 
and Hashin and Shtrikman (1963) bounds. This model, which 
best describes unconsolidated (soft) sandstones (Dvorkin and 
Nur, 1996), was further extended to stiffer sandstones by Allo 
(2019) through the matrix stiffness index (MSI). In Figure 1, we 
show the rock-physics templates for various MSI values ranging 
from 0 to 1. The fluid effects are accounted for using Gassmann 
(1951) fluid substitution. To calibrate the RPM and fit the log 
measurements, we invert for two MSI values: one that fits the 
S-wave modulus and one that fits the P-wave modulus. After 

Figure 1. Rock-physics template of the extended unconsolidated sandstone model 
used to relate the petrophysical properties to the elastic properties. The MSI is used 
as a fitting parameter to calibrate the RPM. Adapted from Allo (2019).
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inverting for these parameters, we are able to reconstruct the P- and 
S-wave velocities measured at the wells.

Statistical analysis. To obtain the parameters needed to generate 
the pseudowell simulations, we next perform a statistical analysis 
on the rock property curves (i.e., the petrophysical and MSI curves) 
for each well. For various reasons, including the fact that the earth 
is composed of a series of stratigraphic layers with different litholo-
gies, the rock property values are nonstationary. Hence, the first 
step we take in our statistical analysis is to separate the well into a 
series of vertically contiguous lithofacies that share common statistics 
(Figure 2). Following Dvorkin et al. (2014), we assume that the 
rock properties of each lithofacies are described by a multivariate 
Gaussian distribution parametrized in 
terms of a mean vector and a covariance 
matrix. The diagonal of the covariance 
matrix describes the variability of each 
of the rock properties within the layer. 
The off-diagonal elements of the covari-
ance matrix capture the correlations 
between the different rock properties 
and help differentiate between lithofa-
cies. For example, dispersive and layered 
shale sands have different porosity versus 
clay relationships, implying different 
correlations. Lastly, the mean describes 
the average value of the background 
trend for the layer. Specifying a constant 
mean leads to a blocky layer model. In 
practice, this is inadequate since most 
rock properties exhibit some depth 
dependence. Instead, we define a linear 
background trend for each rock property 
within each lithofacies (Figure 3a). 

The determination of the lithofacies 
is one of the key steps in the synthetic 
catalog. Since defining the lithofacies 
intervals manually can be quite time-
consuming, we use a two-step semisu-
pervised approach to automate this 
procedure. In this method, we first 
classify each log sample into different 
lithology classes based on a categoriza-
tion of the input attributes, in this case, 
porosity, clay volume, and water satura-
tion. For our case study example, the 
porosity attribute is split into two cat-
egories (e.g., high or low porosity) while 
the clay volume and water saturation 
attributes are split into three categories, 
which yields 18 lithology categories (i.e., 
2 × 3 × 3 = 18). Some of the resulting 
lithology layers do not have enough 
samples to calculate reliable statistics. 
So, in the second step, we agglomerate 
the thin lithology beds into adjacent 
beds sharing similar multivariate 

Gaussian statistics. The final lithofacies are shown in Figure 2. 
After building the lithofacies log, we calculate the background 
trend and covariance matrix for each lithofacies interval. 

Lastly, we need to account for the fact that the logs within 
each well are vertically correlated. If this vertical correlation is 
ignored, the simulations exhibit a sample-to-sample variability 
that is inconsistent with the original well-log data. The spatial 
correlation is modeled using an exponential variogram. This 
variogram mainly acts as a high-cut filter, with the range of the 
variogram being the key parameter controlling the vertical 
variability of the simulated log for each lithofacies, as illustrated 
in Figure 4. In the next step, we combine the covariance matrix 

Figure 2. Elastic properties (P-wave velocity, VP/VS ratio, and density) and petrophysical properties (clay 
volume, porosity, and water saturation) color coded by the lithofacies log. HC and ShSand respectively refer to 
hydrocarbon-saturated and shaly sand categories. The lithology log is obtained using a decision tree logic based 
on thresholds applied to the petrophysical logs. The lithology log is then upscaled to the lithofacies log based on 
statistical considerations.

Figure 3. (a) Clay volume, porosity, and water saturation measured in one of the wells (black) and corresponding 
linear background trends computed on each lithofacies (magenta). The orange lines delineate the bottom 
reservoir, of which the thickness and water saturation trend are modified for the simulation shown in (b). (b) Initial 
measured logs (black) and example of simulation (red) obtained after modifying the thickness and increasing the 
water saturation in the bottom reservoir layer.
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calculated from the exponential variogram with the covariance 
matrix of the rock properties using the Kronecker product 
(Dvorkin et al., 2014) to derive the covariance matrix used to 
generate the simulations. 

Simulations. From results obtained in previous steps, it is now 
possible to create many pseudowells that are representative of the 
geology. We use Gaussian simulations to generate the rock proper-
ties. These Gaussian simulations can be superimposed to what-if 
scenarios applied to specific layers to generate training examples 
spanning the range of the expected geology. After creating the 

rock properties, we derive the corresponding elastic properties 
from the calibrated RPM.

For each well, the rock property curves (i.e., the petrophysical 
and MSI curves) are simulated based on the Gaussian statistics 
for each lithofacies or layer. The correlation matrix imposes a 
relationship between the different rock properties, while the range 
of the variogram controls the vertical variability of the curves. To 
ensure the simulated properties are physical, we impose bounds 
for each property and reject simulations for which the simulated 
properties do not fall between the bounds. The simulations are 
performed independently for each layer to account for the different 
statistics of the lithofacies. Next, the density, P-wave, and S-wave 
velocity logs are calculated from the simulated rock properties 
using the previously calibrated RPM. An important QC is to 
ensure that the simulated logs accurately capture the important 
geologic characteristics of the original logs. The mean of the 
simulations should follow the background trend of the original 
well control, while the random realizations model the natural 
variability of the geology. Figure 5 shows 10 simulations super-
imposed on the original log curves. This QC may reveal some 
inadequacies in the lithofacies classification. For example, after 
running this QC we adjusted some of the parameters used in the 
initial lithofacies classification in order to isolate the high-velocity 
calcareous streaks observed in the original logs at 2000 m depth. 

Then, to ensure that the synthetic data sample the range of 
possible geologic scenarios, we systematically perturb the reservoir 
and surrounding layer properties. For example, the porosity, mineral-
ogy, fluid content, and saturation are all varied around the original 
values. This involves shifting the background trends of the relevant 
properties. In addition, the thickness of the reservoir layers is varied 
to understand the impact of tuning. Figure 3b displays an example 
of a simulation obtained by decreasing the thickness by a factor of 
two and increasing the water saturation. Once again, the calibrated 
RPM is used to calculate the density and velocity curves. This is 
similar to AVO modeling studies in which different parameters 
are systematically varied to understand the interrelationship of 

these parameters. In this study, we intro-
duce five variations for each of the fol-
lowing reservoir properties: porosity, 
water saturation, and thickness. This 
resulted in 125 combinations per well 
for the four wells, giving rise to a total 
of 500 pseudowells. This high number 
of reservoir property combinations far 
exceeds the number of different reservoir 
property scenarios that would normally 
be sampled at the existing well control. 

Synthetic seismic gathers. Finally, we 
perform AVO modeling to create syn-
thetic seismic gathers from each of the 
pseudowells. Because one of the objec-
tives of this study is to compare the 
results with other methods, such as 
deterministic inversion, the seismic data 
were processed following a controlled 
amplitude processing sequence (Soroka 

Figure 4. Effect of the range of the variogram on the simulated curves (in red). 
The range is the key parameter to adequately model the vertical variability of the 
original log curves (in black). The range value is expressed in number of samples 
with a depth sampling of 0.1524 m.

Figure 5. The 10 log simulations in red capture important geologic features of the original well logs shown in black. 
Note that the high-impedance, low-porosity calcareous streak is accurately modeled at 2000 m. This required 
adjusting the lithofacies parameterization.
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et al., 2002) suitable for P-wave AVO 
analysis. This assumes that only compres-
sional wave reflectivity is considered. 
Transmission losses, converted waves, 
and multiples are not incorporated in 
this model and so must be addressed 
through prior processing. 

To be consistent with these assump-
tions, the synthetic gathers are calculated 
using the P-wave reflection coefficients 
calculated using the Zoeppritz (1919) 
equations and a convolutional model 
using a wavelet extracted from the real 
seismic data. Figure 6 shows a subset of 
these synthetic gathers generated from 
eight pseudowells. The synthetic gathers 
are subsequently processed in a manner 
similar to the real seismic data, generat-
ing a series of angle stacks. The resulting synthetic angle stacks 
serve as the input to the neural network analysis. 

It is worth noting that multiples and converted waves could be 
incorporated into the analysis similar to the modeling shown by 
Simmons and Backus (1994). This would involve performing reflec-
tivity modeling (Kennett, 1984) and processing the real seismic 
data in a manner consistent with these different assumptions. 

DNN
The synthetic catalog is then used to train the DNN. The 

target property can be any of the simulated logs (e.g., P-wave and 
S-wave impedance, density, porosity, saturation, and lithology). 
The input features to the neural network are the synthetic seismic 
data or seismic attributes derived from the synthetic seismic. 
Spatially smoothed background trends can also be input as an 
attribute to provide missing low frequencies to the result. We 
follow the methodology described in Hampson et al. (2001) with 
the exception that the synthetic catalog is used to train the DNN. 
The synthetic catalog is randomly split into a training data set 
comprising 85% of the wells and a validation data set made up of 
the remaining 15% of the wells. Following the methodology, 
stepwise regression (Draper and Smith, 1998) is used to select 
the set of attributes that best correlates to the target property. For 
example, Table 1 lists the attributes in order of importance target-
ing the P-wave impedance. Note that training on the synthetic 
catalog and the original wells results in different lists, the implica-
tions of which are discussed in the results section. 

The selected attributes are input into a fully connected DNN. 
The network is deep in the sense that it has multiple hidden layers 
(Figure 7). The number of hidden layers and number of hidden 
nodes per hidden layer are treated as hyperparameters that are 
optimized for each target property. In the P-wave impedance 
example, we use three hidden layers and 20 nodes. The number 
of input nodes corresponds to the number of input features. To 
account for the resolution differences between the seismic and 
log data we use a convolutional operator on the input layer, as 
described in Hampson et al. (2001). Note that this results in a 
different architecture than what is commonly known as a CNN. 

Lastly, the output layer contains a single node corresponding to 
the target property.

The DNN operator is then tested on the validation data set to 
ensure that the nonlinear relationship generalizes well to data not 
used in the training process. Note that neither the training process 
nor the validation process includes the original wells and the real 

Table 1. Stepwise regression results for four initial wells and the synthetic catalog.

Attribute set 1  
(stepwise regression on four 
initial wells)

Attribute set 2  
(stepwise regression on 
synthetic catalog)

Low-frequency P-impedance 
model

Low-frequency P-impedance 
model

Quadrature trace  
(ultra-far-angle stack)

Derivative  
(near-angle stack)

Filter 5/10–15/20  
(far-angle stack)

Second derivative 
(near-angle stack)

Instantaneous phase  
(far-angle stack)

Filter 45/50–55/60 
(mid-angle stack)

Amplitude-weighted cosine 
phase (far-angle stack)

Second derivative  
(mid-angle stack)

Figure 6. Subset of AVO synthetic gathers generated from the pseudowells. Curves in blue show the P-wave 
velocities in the pseudowells.

Figure 7. Example of DNN architecture with three attributes constituting the input 
layer nodes, three hidden layers made of five nodes each, and a single node in the 
output layer that corresponds to the target log.
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3D seismic data. DNN operators are designed for each target 
property from the synthetic data and applied to the actual 3D 
seismic data. After training the DNN operator for a specific target 
property, we apply it to each trace of the real 3D seismic volume to 
obtain 3D estimates of the target property. Similar to prestack 
elastic inversion, the real seismic data are scaled prior to applying 
the DNN operator in order to account for the amplitude differences 
between the real and synthetic seismic.

Results
To evaluate whether the TGDS approach is superior to a solely 

theory-based approach or a solely data science-based approach 
we first compare the TGDS P-wave impedance estimates with 
those of deterministic inversion. Then, to demonstrate that the 
method generalizes well, we display the TGDS P-wave impedance, 
S-wave impedance, and porosity results at a blind well location. 
Lastly, we compare the TGDS result (DNN trained using the 
synthetic catalog) with the data science solution (DNN trained 
only on data from four original wells). 

Figure 8 shows the P-wave impedance estimated from the 
prestack inversion (Hampson et al., 2005) compared to the 
TGDS result along an arbitrary line through the key well loca-
tions. The inputs to both analyses are five angle stacks and a 
low-frequency P-wave impedance model. The objective is to 
resolve a remobilized sand injectite cross-cutting a range of 
stratigraphy at very steep angles. Wells A, C, and D are producing 
from these sands while well B missed the sand injectite and is 
wet. At first glance, the TGDS result exhibits better lateral 
continuity and images some of the thin layers better than the 
deterministic inversion. Examination of the results reveals that 
the TGDS predictions distinguish the producing wells D and A 
from the wet well B and better separate the oil-saturated sand 
from the upper wet sand in well C. Note that both methods 
share the same low-frequency P-wave impedance model and rely 
on 1D operators so that the apparent lateral continuity differences 
are not a function of spatial operators. Quantitatively, the cor-
relations between the TGDS-estimated P-impedance and the 

P-impedance measured at the wells range from 74% to 90%, 
while they range from 63% to 87% for the deterministic 
P-impedance inversion results. 

To show that the TGDS method generalizes satisfactorily, we 
examine the TGDS P- and S-impedance estimates at a blind well 
location. Unlike the four other wells shown on the previous 
P-impedance section, this blind well was not used to generate the 
pseudowells and synthetic seismic data that were input to the DNN 
training. Figure 9 displays the TGDS-estimated P- and S-impedance 
sections on an inline passing through the blind well and well C. 
The TGDS method accurately estimates the P- and S-wave imped-
ances measured at the blind well, with correlations of 87% and 
89%, respectively. As shown in Figure 10, these results are com-
parable to the inversion results for which the correlations reach 89% 
and 91% for the P-impedance and S-impedance, respectively. 

As mentioned earlier, any simulated log can serve as a target, 
which allows the TGDS methodology to solve other geophysical 
inversion problems, such as porosity estimation. The TGDS porosity 
estimates are shown in Figure 11 along the inline passing through 
the blind well and well C and an arbitrary line passing through 
the four wells that were used to generate the pseudowells. Again, 
we notice a good match between the TGDS predictions and the 
porosities estimated at the wells. Since petrophysical properties, 
such as porosity, clay volume, and water saturation, are not routinely 
included in the forward model for seismic model-based inversions, 
the present technique could prove useful in estimating reservoir 
properties without relying solely on a rock-physics transform linking 
inverted elastic attributes and rock properties. 

Finally, we compare the TGDS P-wave impedance estimates 
obtained by training the DNN on the synthetic catalog (Figure 12c) 
to results obtained by training the DNN only on data from the 
four original wells. The TGDS estimate (Figure 12c) matches 
the well control better, in particular the high-impedance tight 
streaks. Further, the DNN trained on the original wells 
(Figure 12a) is more discontinuous and noisier. The difference is 
a result of two factors, the selection of attributes and, secondly, 
the impact of the greater fold and sampling on the operator design. 

Figure 8. P-wave impedance results obtained through (a) simultaneous inversion and (b) the DNN methodology on an arbitrary line going through the four wells that were 
used to generate the pseudowells. The brown ellipses indicate the injectite sand reservoirs.



748      The Leading Edge      October 2020      Special Section: Machine learning and AI

Recall from the DNN section that there are two training 
steps: first, we use stepwise regression to identify the attributes 
that serve as input features to the neural network; second, we 
train the DNN to find a nonlinear operator linking these input 
features to the target log. Table 1 shows the attributes identified 
through stepwise regression calculated on the four original wells 
(attribute set 1) and the synthetic catalog (attribute set 2). The 
instantaneous phase attribute is responsible for the poor continuity 
in Figure 12a and is probably selected due to a spurious correlation. 
This highlights the fact that the stepwise regression may not 
identify the best attributes to describe the target log if run only 
on a small amount of data. 

To make a fairer comparison, Figure 12b shows the DNN 
estimate trained on the original wells using the same attributes 
as the synthetic catalog result (attribute set 2). The two results 
are closer now, but the DNN trained on the synthetic catalog 
(Figure 12c) is still more laterally continuous and matches the 
well control better than the DNN trained using the original well 
control (Figure 12b). In summary, Figure 12 shows that the 
synthetic catalog improves the result by improving the selection 
of features and by improving the DNN operator design. 

Conclusions
In this study, we have presented a new TGDS-based approach 

for reservoir characterization. The methodology consists of first 
simulating many rock property logs based on the statistics of the 
available well control. Then, rock-physics theory is used to model 
the corresponding elastic response. Finally, we perform AVO 
modeling to generate synthetic seismic data. The pseudologs and 
synthetic data are then used to train a DNN. The trained DNN 
operators are then applied to the real seismic volume to obtain 
3D volumes of reservoir properties. 

The key step in the workflow is to use theory to generate 
training data for geologic situations not sampled by the original 
well control — for example, using fluid substitution to model 
hydrocarbon-filled reservoirs when only brine-filled reservoir 
examples are available. This ability to generate more training 

examples becomes more important as the reservoir depends on 
more variables. The existing well control will never sample all the 
possible geologic scenarios. Incorporating theory makes it possible 
to generate better sampled training data, resulting in DNN 
operators which generalize better. 

This TGDS approach was applied to a North Sea data set to 
estimate a variety of different reservoir parameters, including 
P-wave impedance, S-wave impedance, and porosity, demonstrat-
ing the flexibility of the approach. In each case, the TGDS results 
obtained at a blind well location proved that the method generalizes 
quite well away from the original well control that is used to 
generate the synthetic catalog. 

The TGDS P-wave impedance results compare favorably to 
those obtained by the theory-based deterministic inversion. The 

Figure 9. (a) P-wave and (b) S-wave impedance DNN results at an inline going through a well (blind well) that was not used to generate the pseudowells.

Figure 10. Comparison of the DNN (red) and simultaneous inversion (blue) P-wave 
and S-wave impedance estimates with the well-log values (black) at the blind well 
location. The correlations of the P-wave and S-wave impedance DNN estimates 
with respect to the well logs are 87% and 89%, respectively. These results are 
similar to the simultaneous inversion correlations of 89% and 91%.
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TGDS correlation coefficients to the well control range from 
0.74 to 0.90, while those of the deterministic inversion range 
from 0.63 to 0.89. The TGDS results were superior to those 
obtained using a purely data science-based approach where the 
DNN was trained only from the original well control. This is 
due to the fact that the synthetic catalog increases the amount 
of training data and also allows us to model scenarios that may 
not be encountered at the well locations. This contributes to 
improving the selection of features used to train the DNN and 
the accuracy and adequacy of the DNN operator. This has 
practical implications for data science-based reservoir interpreta-
tion projects, suggesting it would be worthwhile incorporating 
synthetic data into the training. The TGDS method has been 
successfully applied to multiple data sets, including one that had 
only one well available in the study area. 
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