
Special Section: Surface-wave applications610      The Leading Edge      August 2021	

Multiwave inversion: A key step for depth model building — 
Examples from the Sultanate of Oman

Abstract
The near surface in the Middle East, particularly in the 

Sultanate of Oman, is characterized by very shallow high-velocity 
carbonates and anhydrites interleaved by slow-velocity clastic 
layers, resulting in sharp velocity inversions in the first few 
hundred meters below the surface. In addition, the surface is 
characterized by features such as unconsolidated materials within 
dry riverbeds (known as “wadis”), small jebels, and sand dunes, 
which cause distortions in the underlying shallow and deeper 
seismic images. This work presents the building of a near-surface 
model by using multiwave inversion that jointly inverts informa-
tion from P-wave first breaks and surface-wave dispersion curves. 
The use of surface waves in combination with first breaks captures 
the lateral and vertical velocity variations, especially in the 
shallowest parts of the near surface. This paper focuses on the 
analysis of two drawbacks of this technology: the picking of the 
input data information, which can be cumbersome and time 
consuming, and the limited penetration depth of surface waves 
at the typical frequencies of active data. To overcome these 
issues, an innovative workflow is proposed that combines the 
use of an unsupervised machine learning technique to guide the 
pick extraction phase and the reconstruction of ultra-low-fre-
quency surface waves (0.5 to 1.5 Hz) through an interferometry 
process using information from natural and ambient noise. 
Deeper near-surface P- and S-wave velocity models can be 
obtained with multiwave inversion using these ultra-low frequen-
cies. The integration of a near-surface model into the velocity 
model building workflow brings a major improvement in depth 
imaging from shallow to deep structures, as demonstrated on 
two data sets from the Sultanate of Oman.

Introduction 
The near surface in the Arabian Peninsula, particularly in the 

Sultanate of Oman, is characterized by complex geologic features 
such as shallow anhydrite layers and carbonate sequences with 
high velocities overlying lower-velocity clastic series (Forbes et al., 
2010). This geologic sequence yields shallow sharp velocity inver-
sions, causing seismic imaging to be challenging. Accurately 
capturing these shallow velocity inversions during model building 
is necessary to image both shallow and deep targets and to mini-
mize image distortions and migration artifacts. Estimation of the 
P-wave velocity (VP) model for the first kilometer below the surface 
can be difficult due to rapid vertical and lateral variations in the 
geologic structures. Despite some major advances in depth imaging 
technology based on full-waveform inversion (FWI) (Stopin et al., 
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2013; Sedova et al., 2017; Perez Solano and Plessix, 2019), the 
imprint caused by the near surface remains a major challenge for 
land depth imaging.

Over the last decades, approaches based on refracted P-waves, 
such as first-arrival traveltime tomography (Taillandier et al., 
2009), have been the standard methods for creating velocity models 
of the near surface. However, first-arrival traveltime tomography 
usually lacks resolution in the shallow part of the medium due to 
the horizontal nature of diving waves and their inability to capture 
small and rapid velocity inversions, mainly due to shingling effects 
(Golikov and Bakulin, 2014). In order to overcome this issue, 
surface-wave inversion has emerged as an alternative solution 
(Socco and Strobbia, 2004; Boiero et al., 2013). Surface waves 
are very sensitive to lateral and vertical velocity variations, espe-
cially in the shallowest parts of the near surface. They provide 
S-wave velocity (VS) information that needs to be converted into
a VP velocity field for depth imaging. Moreover, joint inversion
algorithms have been proposed using different seismic input data,
such as first breaks and surface-wave dispersion curves (Dal Moro 
and Pipan, 2007; Re et al., 2010), or nonseismic data (Colombo
et al., 2008). The advantage of joint inversions lies in the merging 
of different information, which decreases the ill-posed nature of
the inversion and leads to more reliable solutions.

In this paper, we create near-surface velocity models by using 
multiwave inversion (MWI) (Bardainne, 2018), which jointly 
inverts first breaks, surface-wave dispersion curves, and vertical 
two-way traveltimes using a stochastic inversion approach. We 
focus our analysis on methods to overcome two drawbacks of this 
technology: the picking of the input data information, which can 
be cumbersome and time consuming, and the limited penetration 
depth of surface waves at the typical frequencies of active data. 
First, we show how unsupervised machine learning (ML) can be 
crucial to recovering the accuracy of surface-wave velocity picking 
(Hou et al., 2019). We present an automated ML dispersion-curve-
picking flow to improve picking reliability on both low and high 
frequencies of the phase-velocity spectra and demonstrate its impact 
on MWI results. Second, because the penetration depth of surface 
waves depends on the minimum recorded frequency, the depth of 
an MWI-inverted velocity model is limited to a few hundred 
meters for conventional seismic data with minimum reliable fre-
quencies of approximately 2 Hz. To overcome this constraint, we 
propose using passive surface waves reconstructed by interferometry 
of blended continuous-recording data (Le Meur et al., 2020). The 
continuous-recording data contain lower frequencies from natural 
sources (e.g., ocean waves, wind, and microearthquakes) and human 

1CGG, Muscat, Oman. E-mail: daniela.donno@cgg.com; mohammad.farooqui@cgg.com; mostafa.khalil@cgg.com; david.mccarthy@cgg.com.
2CGG, Massy, France. E-mail: didier.solyga@cgg.com; jillian.courbin@cgg.com; anthony.prescott@cgg.com; laurie.delmas@cgg.com; 

david.lemeur@cgg.com.

https://doi.org/10.1190/tle40080610.1

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/tl
e4

00
80

61
0.

1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Ftle40080610.1&domain=pdf&date_stamp=2021-08-02


Special Section: Surface-wave applications August 2021      The Leading Edge      611

activity than those emitted by active seismic sources. The inter-
ferometry method allows us to use this seismic noise to reconstruct 
passive virtual data characterized by ultra-low frequencies (Schuster, 
2009). As recently shown by Dellinger and Yu (2009) and Brenguier 
et al. (2019), ultra-low-frequency passive seismic data can success-
fully image much deeper structures.

We show the benefit of applying all of these techniques on 
two case studies from the Sultanate of Oman (one from the north 
and one from the south; Figure 1). First, we demonstrate the 
efficiency of the unsupervised ML workflow for improving 
surface-wave picking. Second, we apply the seismic interferometry 
approach to retrieve ultra-low-frequency surface waves. Our 

results prove that these technologies better characterize the near 
surface and have a significant positive impact on the imaging of 
deeper events.

Challenges of reliable surface-wave and first-break picks
The success of MWI strongly depends on the quality of picking 

the first breaks and surface-wave dispersion curves. In this section, 
we analyze the challenges of obtaining reliable surface-wave and 
first-break picks and how the use of ML tools can help with these 
tasks. We present our workflow on a data set from the southern 
part of the Sultanate of Oman (bottom red square in Figure 1). 
The velocity variations in this area are illustrated in Figure 2a, 
where the phase velocity of the surface phase extracted at a fixed 
frequency (8 Hz) shows lower-velocity areas (corresponding to 
basins and wadis) surrounded by higher velocities in the gravel 
plain. Wave propagation in such a laterally variable near surface 
affects the seismic arrivals. This is illustrated in Figure 2b (yellow 
arrow), which shows distortions of both shallow and deeper seismic 
reflections below the wadi.

For inversion of the surface-wave velocity, it is important to 
pick the phase velocity on a reliable surface-wave propagation 
mode, such as the fundamental mode. In order to avoid the picking 
of higher overtones, we must constrain the surface-wave velocity 
picking within a predefined velocity/frequency corridor. However, 
due to the spatially varying nature of the phase velocity, as shown 
in Figure 2a, defining one single a priori velocity/frequency corridor 
for the whole survey is not appropriate. To capture the large spatial 
and frequency-dependent velocity variations, the creation of a 
robust guide is necessary. This is computed from the dispersion 
panels. To ease this task, we built a workflow that employs an 
unsupervised ML technique to select the smallest number of 
relevant dispersion panels describing the characteristics of the 
surface waves required for the inversion (Masclet et al., 2019). 
Before detailing the ML-guided corridor workflow, we need to 
improve the signal-to-noise ratio of the data used for picking. 
Aliasing of surface waves and other coherent/random noise due 
to survey acquisition or in-field facilities can significantly affect 
the quality and interpretation of the dispersion panels. Therefore, 
rigorous preconditioning is applied, including several denoising 
techniques such as a low-rank sparse inversion (Sternfels et al., 
2015) to remove noncoherent noise and a data-driven interfer-

ometry approach (Chiffot et al., 2017) 
to interpolate the surface waves and 
remove aliased events. The benefit of 
this processing sequence is shown in 
Figure 3 with the input and conditioned 
gathers from two different locations 
(corresponding to the blue and yellow 
stars in Figure 2a). The seismic gather 
located in the wadi area (top of Figure 3) 
shows strong phase-velocity variations 
from low to high frequencies (400 m/s 
at 25 Hz). Instead, for the gather in the 
gravel plain (bottom of Figure 3), the 
dispersion of surface waves is lower with 
higher velocities at high frequencies 

Figure 1. Satellite map of the Sultanate of Oman showing the locations of the two study 
areas in the north and south (red squares).

Figure 2. (a) Overlay of the satellite map with the phase velocity extracted from the surface waves at 8 Hz. The two stars 
indicate the location of the shot gathers shown in Figure 3. (b) Seismic section in time through the wadi and gravel plain, 
corresponding to the black dashed line in (a). The yellow arrow indicates the wadi location.
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(1200 m/s at 25 Hz) and several velocity 
inversions visible below 5 Hz. Our 
preconditioning f low also reveals 
improved continuity of the dispersion 
curves on the lower frequencies, thus 
allowing an increase in the maximum 
depth of the velocity model from MWI.

After this preprocessing, the disper-
sion panels are clustered using an unsu-
pervised ML method based on K-means 
clustering (MacQueen, 1967), such that 
dispersion panels belonging to a cluster 
are more similar to each other than to 
those in other clusters. For this survey, 
K-means clustering with 20 clusters is 
applied to all dispersion panels. During 
this process, a centroid image is created 
for each cluster corresponding to the 
most representative dispersion panel for 
each cluster. Among the created clus-
ters, those corresponding to centroid 
images with inconsistent dispersion-
curve shapes, as shown in Figure 4b, 
are interpreted by the user as outliers 
and rejected. These outliers are mainly 
located at the edges of the survey or 
correspond to very noisy or incomplete 
input data. Only the clusters that cor-
respond to good-quality dispersion 
panels are kept by checking their spatial 
distribution and consistency with the 
centroid panel. For this data set, eight 
clusters are selected, as shown in 
Figure 4a. From this figure, it is 
observed that the clustering map of the 
selected clusters reveals good correlation 
with geologic features, such that the 
dispersion curves related to wadis and 
other low-velocity areas can be accu-
rately separated from the rest of the 
data. Another important parameter 
from K-means clustering that can be 
used to perform quality control of the 
dispersion panels is the Euclidian dis-
tance measured between each dispersion 
panel and its associated centroid for each 
cluster (Figure 5). This distance 
describes the consistency and similarity 
of dispersion panels within the same 
cluster. Panels with small Euclidian 
distance values resemble the centroid 
panel, while those with higher distances 
are characterized by distorted modes. 
For each selected cluster, poor-quality 
panels were discarded based on their 
Euclidian distance from the centroid 

Figure 3. Input (left) and processed (center) shot gathers and their associated dispersion curves (right) computed over a spatial 
window of 1 km offset. Top: the wadi area (yellow star in Figure 2a). Bottom: the gravel plain (blue star in Figure 2a). 

Figure 4. K-means clustering maps. (a) Locations kept with the selected eight clusters (red to blue colors). (b) Locations of 
outlier clusters corresponding to survey edges or noisy locations.

Figure 5. Euclidian distance plot for cluster 2. Dispersion panels at the farthest distance from the centroid image correspond to 
low-quality panels and are therefore discarded. Here, only a percentage of panels within a defined standard deviation are kept 
and picked based on maximum amplitude in order to extract a guide (dashed black lines).
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as an adequate corridor in frequency 
or period versus the phase velocity for 
the picking on all panels (Bouhdiche 
et al., 2020). The picking method 
(Duret et al., 2016) consists of a mul-
tiazimuth 3D extension of the multi-
offset phase analysis technique pro-
posed by Strobbia and Foti (2006). For 
each gather, traveltime picks are esti-
mated not only for every frequency/
period but also for different azimuth 
directions in order to obtain higher 
lateral resolution for the subsequent 
surface-wave tomography. This step 
converts the spatially irregular fre-
quency-dependent picks into a regular-
ized (x, y, frequency/period) Rayleigh 
wave velocity volume (Figure 6). 
Figure 6a shows the surface-wave 
tomography result obtained with 
manually defined polygons to create 
different picking corridors for the low- 
and high-velocity areas. Figure 6b 
shows the result obtained after using 
the described ML workflow. The tomo-
graphic result using ML-guided pick-
ing contains more structural detail and 
clearly identifies wadis and other slow-
velocity anomalies.

In addition to surface-wave picks, 
first-break picks are also used in MWI. 
A quality-control step is necessary to 
remove outliers or picks with cycle skips. 
K-means clustering was used to build a 
velocity corridor in the velocity/offset 
domain in order to edit out the first-
break picks associated with a velocity 
inversion or anomalous values, espe-
cially at near and far offsets (Prieux 
et al., 2020). Finally, the selected first-
break picks and the regularized Rayleigh 
wave velocity volume are jointly inverted 
to provide VP and VS near-surface veloc-
ity fields. Figure 7 shows a comparison 
of the P-wave velocity model obtained 
with MWI (Figures 7c and 7d) and 
with first-break tomography alone 
(Figures 7a and 7b). The VP model 
updated by MWI successfully captures 

the sharp lateral velocity variations around the wadi, as well as 
the first velocity increase below the topography (Figure 7d), which 
corresponds to the Taqa Formation. However, in order to capture 
deeper velocity inversions (beyond the 200 m depth of the actual 
MWI model), we need Rayleigh waves with frequencies lower 
than those recorded on the active seismic. Here, the minimum 
frequency of the vibrator sweep started at 1.5 Hz. To reconstruct 

according to a standard deviation value chosen by the user after 
overall analysis of the clusters. Generally, about 90% of the panels 
are kept within each cluster. A frequency-dependent velocity 
corridor is then automatically picked on all selected panels by 
selecting the maximum amplitude of the dispersion curves at each 
frequency (dashed lines on the panels in Figure 5). The guide is 
spatially interpolated and filtered for the whole survey and used 

Figure 6. Frequency slice at 8 Hz after the surface-wave tomography with (a) manually defined polygons to create different 
picking corridors for the low- and high-velocity areas and (b) the described unsupervised ML workflow. Low-velocity anomalies 
correlate well with the wadi contour observed on the satellite map (Figure 2a) and on the shallow depth seismic sections 
(Figures 7a and 7b).

Figure 7. VP velocity model overlaid on migrated seismic (a–b) from first-break tomography and (c–d) from MWI. Top: Depth 
slices at 70 m below the topography. Bottom: Near-surface migrated section located along the dashed black line. The 
maximum depth penetration of the MWI is related to the minimum picked frequency. It is about 200 m below the topography 
in this example.
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ultra-low-frequency surface waves, we use an interferometry 
process by utilizing natural and ambient noise, as described in 
the next section.

Recovering ultra-low-frequency surface waves from interferometry 
of continuous recordings

With the increasing deployment of blended land acquisition 
surveys (Abma et al., 2015) based on continuous recording, there 
is an opportunity to reconstruct ultra-low-frequency surface waves 
through an interferometry process with natural and ambient noise 
(Le Meur et al., 2020; Al-Droushi et al., 2021). Blended 
continuous-recording surveys have become increasingly common 
for land acquisition in desert environments in recent years (Zhao 
et al., 2018) because they reduce the cost of broadband wide-
azimuth acquisitions. The recording periods without active sources 
are not seismically quiet because sources generating ambient and 
natural noise are always present in the background. Moreover, 
while the useful frequency range for active data is limited by the 
minimum frequency of the source sweep (generally 1.5 or 2 Hz 
for modern acquisitions), seismic signals created by natural sources 
(e.g., ocean waves) or human activity cover a lower frequency 
range, down to about 1 Hz for human activity and well below 
this limit for natural noise (Boué et al., 2019). During blended 
land acquisitions, all of these seismic signals/noise sources are 
recorded for several days or weeks.

The interferometry method (Wapenaar, 2004) allows us to 
use continuous-recording seismic to reconstruct passive virtual 
data, such as surface or refracted waves. Seismic interferometry 
utilizes the cross correlations of seismic traces to reconstruct the 
Green’s function between the receivers. From a practical point 
of view, we divide the continuous data into time intervals (e.g., 
every 30 s) to form subsets of gathers for the interferometry 
computation. For each subset, a virtual source position is defined, 
and the closest receiver station to the chosen virtual source 
position is cross correlated with all other stations in the same 
subset. All virtual shots from all time intervals are then stacked 
to form the final virtual shot. Usually, the main constructive 
contributions to interferometry come from noise sources located 
within stationary phase areas (Snieder, 2004). The locations of 
the vibrated points and the sweep emission times of blended 
acquisition enable us to relate the time intervals of continuous 
records to the noise sources coming from these stationary phase 
areas. Then, the noise sources within a given angular direction 
are selected by excluding the simultaneous vibrated points, which 
are too close to the selected receiver stations. This enables better 
reconstruction of the virtual shot and prevents a large bias from 
the active blended data.

We reconstructed 2D virtual shot gathers (over a 300 × 300 m 
grid) by interferometry on the same study area from the southern 
part of the Sultanate of Oman by using data with 15 days of 
continuous recordings. Surface Rayleigh waves are the main type 
of reconstructed waves because their propagation is linear between 
receivers and they are the highest-energy seismic waves propagat-
ing in desert environments. By comparing virtual shots computed 
at selected locations with active deblended shots at the same 
locations, we can observe that the propagation of surface waves 

is well reconstructed (Figures 8a and 8d). The selected virtual 
shot gather is at the boundary between the wadi area and the 
gravel plain (close to the position of the shot gather in Figure 3a 
[yellow star]). We can observe that the surface-wave properties 
are different for the positive and negative offsets, as shown by 
the dispersion-curve gathers for the negative offsets (Figures 8b 
and 8e) and the positive offsets (Figures 8c and 8f), which present 
different phase-velocity values for a given frequency. Moreover, 
we notice that the virtual shot contains lower frequencies with 
higher signal-to-noise ratio than the active one. This indicates 
that the picking of the maximum of the dispersion curve is more 
accurate and robust on the fundamental mode. Finally, dispersion 
panels show that the minimum usable frequency is 1.5 Hz for 
the active shot (which is the starting frequency of the vibrator 
sweep) and 0.5 Hz for the virtual shot. We therefore expect that 
if we invert the surface waves from virtual shots, the investigation 
depth will triple because the penetration depth of surface waves 
is inversely proportional to the minimum recorded frequency 
(Socco and Strobbia, 2004). In the next two sections, we apply 
the workflow described earlier to two data sets from the south 
and the north of the Sultanate of Oman.

Case study from the south of the Sultanate of Oman
The near-surface geology in this area is composed of complex 

interleaved low- and high-velocity layers (with VP from 2000 to 
4500 m/s), such as shale/sandstone and carbonates, which also 
vary in thickness from a few tens to hundreds of meters. Moreover, 
the topography is characterized by wadis and gravel plains. For 
MWI, we used the surface-wave dispersion curves extracted 
from active deblended and virtual data and combined them with 
first-break picks. The ML-based corridor was used to enable the 
picking as described. For this survey, the frequency range for 
dispersion-curve picking was from 1.5 to 15 Hz on the active 
data and from 0.5 to 9 Hz on the virtual shots. For layering of 
the initial velocity models, we used layers that follow the main 
geologic structures, which helped the inversion to spatially follow 
the geologic variation trend of the near surface. We used thinner 
layers (about 10 m) in the shallow part and thicker layers in the 
deeper part (about 50–60 m), according to the expected resolution 
of the surface waves. Figure 9 shows the VP velocity models 
inverted with MWI using either the active dispersion curves 
(Figure 9b) or the active and virtual ones together (Figure 9c). 
The near-surface models were merged with the legacy ray-based 
tomography model (Figure 9a). The maximum depth of the model 
inverted with virtual data is about 700 m (Figure 9c), which is 
significantly deeper than the 200 m depth achieved with active 
data (Figures 7d and 9b). This near-surface MWI model also 
shows a good fit with the sonic log (Figure 9d) for the first 700 
m below the surface, which is approximately the maximum 
penetration depth of surface waves. From the comparison between 
the sonic log and the VP profile from MWI, we observe that 
while the shallower high-velocity layer can be obtained using 
either the active or virtual data (yellow and green curves, respec-
tively), the deeper velocity variations with the alternating slow 
and fast velocities are only recoverable by the inversion with 
virtual surface-wave data (green curve).
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The influence of near-surface velocity models on depth imaging 
is confirmed by Kirchhoff depth migration with the velocity 
models shown in Figure 9. The MWI models are merged with 
the legacy tomography-based velocity model beyond their maxi-
mum penetration depth in order to obtain the full velocity model 
from top to bottom. Compared to the depth-migrated image 
obtained with the legacy tomography velocity model (Figure 10a), 
the depth section with the VP near-surface model inverted from 
active data down to 200 m below the topography shows only small 
improvements under the wadi and in the deeper parts (Figure 10b). 
Instead, major improvements are visible on the shallow and deep 

structural image when the near-surface 
VP model is replaced (down to about 
700 m below the surface) with the MWI 
model inverted from both virtual and 
active data (Figure 10c). The green 
arrows show better focusing and simpler 
structures below the wadi. Moreover, 
the yellow arrows and dashed rectangles 
highlight areas of the presalt Nafun 
Group (between 2.5 and 4 km depth), 
where the structure is distorted when 
the legacy tomography-based velocity 
model (Figure 10a) is used for imaging. 
The focusing of the deep Nafun struc-
ture is improved when the deeper near-
surface MWI model is included in the 
depth velocity model (Figure 10c). The 
depth slice at 3.6 km also reveals that 
the shallower structures in the wadi area 
(within the yellow circle in Figure 10d) 
show an imprint on the deep presalt 
layers. The use of MWI near-surface 
models (Figures 10e and 10f) signifi-
cantly improves focusing and lateral 
consistency of these deeper presalt 
events and removes the imprint of the 
shallow structures.

Case study from the north of the 
Sultanate of Oman 

This area is characterized by a very 
complex near surface, exposing a thrust-
faulted antiform structure with steeply 
dipping flanks going right up to the 
surface. These fault flanks are overlain 
by high-velocity rocks and underlain by 
slower-velocity rocks, which also make 
up the core of the dome (Figure 11a). 
Despite the wide-azimuth high-density 
blended acquisition, with offsets up to 
10 km, the near-offset coverage is still 
poor. The lack of recorded offsets makes 
it difficult to obtain a reasonable velocity 
model with conventional ray-based 
tomography methods because there is 

little to no reliable moveout information and inadequate angle 
and offset distributions at shallow depths. Moreover, the presence 
of strong velocity inversions is difficult to capture with first-break 
inversion methods.

MWI was used for this data set to obtain an accurate estimate 
of the near-subsurface model by jointly inverting surface-wave 
dispersion curves and first-break picks up to a maximum 1 km 
offset. The unsupervised ML approach presented previously was 
used to create a surface-wave guide to ease and improve the picking 
of dispersion curves on the full volume. Even with a minimum 
sweep frequency of 1.5 Hz, the presence of scattering noise from 

Figure 8. (a) Active shot with its dispersion panels using (b) the negative offsets and (c) the positive offsets. (d) Virtual passive 
shot with its dispersion panels using (e) the negative offsets and (f) the positive offsets. The low frequencies of the virtual shot 
have a higher signal-to-noise ratio than the active one. The picking of the maximum of the dispersion curve is therefore more 
accurate and robust on the fundamental mode.

Figure 9. Kirchhoff depth-migrated sections overlaid by the velocity model using (a) legacy tomography-based velocity model 
without MWI, (b) MWI model from active data merged with the legacy model, and (c) MWI model from active and virtual data 
merged with the legacy model. (d) Sonic log (blue) with the main lithostratigraphy formations overlaid by the VP velocity profiles 
from the MWI with active data (yellow) and active and virtual data (green). Courtesy Le Meur et al. (2020).
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the complex near surface made it dif-
ficult to achieve reliable surface-wave 
picks below 2.5 Hz with deblended 
(active) data. However, the picking of 
the first breaks and surface waves above 
2.5 Hz gave a detailed MWI near-
surface model, capturing the shallow 
lateral velocity variations, albeit with a 
lack of depth penetration 150 m below 
the topography. The blended continuous 
recordings were then used to reconstruct 
ultra-low-frequency surface waves 
through interferometry, as presented in 
the previous section. These virtual shots 
enabled reliable picking of dispersion 
curves with minimum frequencies as 
low as 1.2 Hz, and therefore the pen-
etration depth for the MWI can reach 
approximately 400 m below the surface. 
In Figure 11, we co-render the legacy 
velocity model with the Kirchhoff-
migrated image for a depth slice at 
200 m below the surface (Figure 11a) 
and two vertical sections within the area 
(Figures 11b and 11c). A general trend 
of spatial near-surface velocity variation 
is captured by the legacy model. 
However, the velocity update obtained 
by MWI, with the combined use of 
surface-wave dispersion curves from 
active and virtual data, resulted in a 
much more detailed near-surface VP 
model (Figure 11d). 

Because the MWI accurately cap-
tures the high velocity overlying the 
dipping flanks of the thrust and the 
underlying low velocity (black arrows 
in Figure 11f), it significantly improves 
structural definition of the thrust fault 
(black arrows in Figure 11d) and depth 
positions of the near-surface reflectors 
(Figures 11e and 11f). As observed with 
the previous case study, more detailed 
near-surface velocity models not only 
improve the images at shallow depth 
(within the dashed blue box in 
Figure 12e), they also have a positive 
impact on the deeper imaging, as shown 
in Figures 12d and 12e, where the 
continuity of the deep events (within 
the dashed blue circle) below the thrust 
area is improved. It should be noted 
that, for these examples, the MWI 
model was merged with the legacy 
velocity model from approximately 
400 m below the surface. Finally, by 

Figure 10. Top: Kirchhoff depth-migrated sections with the (a) legacy tomography-based velocity model, (b) MWI model from 
active data merged with the legacy model, and (c) MWI model from active and virtual data merged with the legacy model. The 
green and yellow arrows indicate areas of improved focusing and simpler structures below the wadi. The yellow dashed squares 
indicate the location of the depth slices. Bottom: Kirchhoff depth-migrated slice at 3.6 km with the (d) legacy tomography-
based velocity model, (e) MWI model from active data merged with the legacy model, and (f) MWI model from active and virtual 
data merged with the legacy model. The yellow circles indicate the location of the wadi. 

Figure 11. Depth slice (200 m below the topography) and inline sections of Kirchhoff depth migrations (a–c) with  
velocity overlaid for the legacy model and (d–f) with active and virtual MWI merged with the legacy model. Note the 
structurally improved image of the dipping areas/crestal structure and slow/fast velocity details in the very shallow 
part of the section (black arrows).
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comparing the snail gather (common 
offset and azimuth) shown in 
Figures 12c and 12f, the improvements 
in gather residual moveout flatness are 
clearly visible, which enables better 
residual curvature picking at larger 
offsets for conventional traveltime 
tomography. The near-surface model 
obtained with this advanced workflow 
can also benefit the subsequent model-
building steps, such as full-waveform 
inversion,  thanks to a more accurate 
shallow input velocity model (Masclet 
et al., 2020).

Conclusions
MWI is a key technology for 

improved depth velocity model build-
ing using land data from the Middle 
East. The main success factors are: 
(1) an unsupervised machine learning
approach to build a guide for more 
precise estimation of vertical and lateral 
velocity variations in surface waves in 
different geologic settings and (2) the 
use of ultra-low-frequency surface 
waves that allow a near-surface velocity 
update down to a depth of several hundred meters below the 
surface. This deeper penetration enables the capture of shallow 
velocity inversions, which are usually challenging to capture 
with either first-break tomography or low-frequency FWI. From 
the two different examples shown, we demonstrated that by 
incorporating a shallow MWI model update into the depth 
velocity model, the resulting seismic depth image is significantly 
improved and more geologically interpretable. Moreover, by 
improving common-image gather quality, this method is ben-
eficial for subsequent updates of the deeper velocity model. The 
near-surface P- and S-wave velocity models obtained from MWI 
can also be used as input shallow models for elastic FWI. 
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