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Model misspecification and bias in the least-squares algorithm: 
Implications for linearized isotropic AVO

Abstract
When inversions use incorrectly specified models, the esti-

mated least-squares model parameters are biased. Their expected 
values are not the true underlying quantitative parameters being 
estimated. This means the least-squares model parameters cannot 
be compared to the equivalent values from forward modeling. In 
addition, the bias propagates into other quantities, such as elastic 
reflectivities in amplitude variation with offset (AVO) analysis. I 
give an outline of the framework to analyze bias, provided by the 
theory of omitted variable bias (OVB). I use OVB to calculate 
exactly the bias due to model misspecification in linearized iso-
tropic two-term AVO. The resulting equations can be used to 
forward model unbiased AVO quantities, using the least-squares 
fit results, the weights given by OVB analysis, and the omitted 
variables. I show how uncertainty due to bias propagates into 
derived quantities, such as the χ-angle and elastic reflectivity 
expressions. The result can be used to build tables of unique relative 
rock property relationships for any AVO model, which replace 
the unbiased, forward-model results.

Introduction
Many geophysical inversion workflows rely on a comparison 

of estimated model parameters to their forward-model equivalents. 
Such workflows assume that the inverted model parameters are 
unbiased estimates of the model values. This means that were we 
to average an increasing number of repeated measurements, the 
averages of their model parameters would converge to the true 
model values. A key assumption for this to hold in least-squares 
theory with nonorthogonal basis functions is the correct specification 
of the model in the inversion. Model misspecification, such as when 
fitting a linear model to data with quadratic variability, results 
in biased model parameter estimates. In such cases, the least-
squares algorithm is able to find a better fit to the data, and a 
lower least-squares value, by adjusting the model parameters 
away from their unbiased values. Model misspecification is 
common in linearized amplitude variation with offset (AVO) 
(Causse et al., 2007; Ball et al., 2014b; Thomas et al., 2016), 
where we often fit the data to linearized and simplified versions 
of the Knott-Zoeppritz equations (Knott, 1888; Zoeppritz, 1919)2. 
First, there is the linearization error itself, which is introduced 
by assuming small contrasts across the boundaries. Second, much 
of AVO fitting is performed with truncated models where only 
the first two dominant terms of the linearized AVO equations 
are modeled. Linearized AVO of prestack data has limited infor-
mation content, which means that estimates of three or more 
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terms can be numerically unstable (de Nicolao et al., 1993; Ursin 
and Tjaland, 1993). In addition, the recorded data at larger angles 
are less reliable due to processing and imaging issues (Connolly, 
2017). Different linearized versions of the Knott-Zoeppritz 
equations, such as those commonly called the Shuey (Wiggins 
et al., 1983; Shuey, 1985) and Fatti (Gidlow et al., 1992; Fatti 
et al., 1994) two-term AVO equations, have different third terms 
so that their truncation errors due to the omission of this term 
are different. Within linear least squares, an analysis of bias due 
to model misspecification exists; it is called omitted variable bias 
(OVB) (Greene, 2003). It allows us to analytically forward model 
bias due to the omission of variables based on the known and 
data-independent design matrix A of the fully specified linear 
model, and the values of the omitted variables. The theory is 
general, but I could find no mention of it in the geophysical 
literature. Here, I show how to calculate exactly the bias due to 
model misspecification in linearized isotropic two-term AVO. 
I base the analysis on the pseudo-quadratic expansion of the 
Knott-Zoeppritz equation due to Wang (1999) and Mallick 
(1993), which adds a single higher-order term to the three-term 
Aki-Richards expression of linearized AVO (Aki and Richards, 
1980). This allows us to see the relative importance of two omitted 
variables: the respective third terms and the quadratic term. 
Extensions to other cases are easily derived from the general 
theory. I show how to use the analytic bias expressions to model 
the systematic uncertainty in least-squares two-term AVO param-
eters and how this uncertainty propagates into derived quantities, 
such as the χ-angle and elastic reflectivity expressions (Ball et al., 
2014a; Connolly, 2019). 

Key concepts using a toy model
Consider an AVO toy model3 in which the reflectivity data as 

a function of incidence angle are described by a two-term Shuey 
model (Wiggins et al., 1983; Shuey, 1985), linear in the sin2(θ) 
values: R(θ) = R(0) + sin2(θ) G. Assume that the acquired data 
follow this model but with added Gaussian homoskedastic noise. 
A least-squares fit of the data to the two-term model d = m0 + sin2(θ)m1 
gives unbiased estimates m̂0 = R̂ 0( ) and m̂1 = Ĝ  of the model 
Shuey intercept R(0) and model Shuey gradient G, with the variance 
of the estimated model parameters dependent on the measurement 
noise (Aster et al., 2005; Menke, 2012). As is customary, I put a 
hat on the least-squares estimates of the model parameters to 
distinguish them from their forward-model equivalents. If we 
were able to repeat the experiment many times, yielding many 
noisy realizations of the data (as in a Monte Carlo simulation of 

1CGG, Crawley, UK. E-mail: henning.hoeber@cgg.com.
2The authors of Ball et al. (2014b) call this truncation bias, but I find this term is used differently in the literature (Greene, 2003).
3Toy model: A simple model, with details removed, to help explain the key concepts of the general theory.
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the data), we would find that the average values of the fit parameters 
to the noisy data agree with the true model values. 

Suppose now we misspecify the model and fit a single term 
to the data, d = m0. We may hope to obtain an unbiased estimate 
of the two-term model Shuey intercept m̂0 = R̂ 0( ) since R(0) is 
the first term in the two-term forward model. But this is not what 
happens in least-squares fitting or inversion. The cost function of 
the least-squares algorithm adjusts the remaining model parameter 
to minimize the misfit of the predicted data model and the input 
data. A much smaller overall misfit is obtained by setting m̂0  to 
the average data value. The result of the one-term fit is therefore 
an estimate m̂0 = Ŝ  of the model stack S, and hence a mix of the
Shuey intercept and the Shuey gradient, where the gradient term 
is weighted with the average 〈sin2(θ)〉 of the sin2(θ) values. The 
omitted variable in the one-term model, the gradient, leaks into 
the estimate of the intercept m̂0 . Comparing the biased one-term 
intercept m̂0  to a forward-modeled Shuey intercept R(0) is a 
category error (Causse et al., 2007; Thomas et al., 2016), in effect 
a comparison of apples and oranges. The one-to-one correspon-
dence between the two fit parameters m̂0 and m̂1 and the two 
Shuey model parameters R(0) and G only holds when the data 
variability is fully described by the model used.

The bias of the one-term intercept estimate m̂0 is the product 
of a data-independent weight term 〈sin2(θ)〉 and the omitted 
variable G. This structure always holds for least-squares model 
parameters in misspecified models:

biased variable = unbiased variable + bias
            bias = data independent weight term × omitted variable(s). (1)

In OVB, the least-squares fit result in the reduced model is 
rewritten in terms of the least-squares fit result in the full, unbiased 
model, as in equation 1. This means the notation needs to track 
the order of the fit for each least-squares model parameter. For 
example, in the toy model, we saw that the one-term and two-term 
least-squares intercept estimates are m̂0

1t( ) = Ŝ  and m̂0
2t( ) = R̂ 0( ).

The superscripts 1t and 2t on the left-hand side denote the order 
of the fit. The terms on the right-hand side of these equations, 
without reference to the order of the fit, and written in AVO 
Shuey notation, imply that these are unbiased estimates. One-term 
AVO returns an unbiased estimate of the stack, and two-term 
AVO, in our toy model where the full data variability is given by 
two terms, returns unbiased estimates of the Shuey intercept R̂ 0( ) 
and the gradient m̂1

2t( ) = Ĝ .
Combining those two results, we can write:

m̂0
1t( ) = Ŝ

= R̂ 0( )  + bias

= m̂0
2t( ) +  sin2 ( )  Ĝ .

(2)

In the presence of bias, the one-term least-squares estimate
of the intercept m̂0

1t( ) = Ŝ cannot be used in subsequent analysis, for
example using a rock-physics template, as if it were an estimate 
of the Shuey model intercept R̂ 0( ) . Thomas et al. (2016) 

formulated this slightly differently: “Quantitative relationships 
between true elastic properties are not always applicable to inverted 
elastic properties.” This is due to bias, in effect a misinterpretation 
of the least-squares model parameters in a misspecified model.

We can further use the toy model to explore strategies for 
obtaining less biased or even unbiased least-squares model 
parameters. First, we may use less of the data and fit the one-term 
model only to that part of the data where we think it best specifies 
the data. This keeps the data-independent weight in the bias 
term small. The price we pay for this strategy is a much larger 
variance as a trade-off for less bias. OVB tells us precisely the 
relation between the systematic error due to OVB and the 
maximum fit angle.

An alternative strategy is to reparameterize the model in 
orthogonal variables. In orthogonal basis systems, the bias weights 
are zero. None of the model parameter estimates exert any influence 
over the others, and we can fit each term independently of the 
others. In seismic processing, we make use of this whenever we 
stack the data: the stack is orthogonal to all higher-order terms 
and hence unbiased. All the basis functions for all the included 
and omitted variables must be orthogonal for the least-squares 
estimates of the included model parameters of the misspecified 
model to be unbiased. For example, fitting two-term AVO with 
stack and gradient as model parameters is not sufficient to remove 
gradient bias due to the curvature component because gradient 
and curvature are not orthogonal variables, even if stack and 
gradient as well as stack and curvature are.

A third strategy consists of finding AVO models in which the 
omitted variable, rather than the bias weight, is small. For example, 
the Fatti AVO parameterization has a density contrast as the third 
term, whereas in the Shuey AVO model the third term relates to 
the P-wave velocity contrast. This suggests that the two-term 
Fatti model has smaller bias than the two-term Shuey model 
corresponding to the same three-term linearized AVO.

Lastly, consider the outcome of the two one-term regressions 
in the toy model with respect to the quality control (QC) we use 
to investigate the efficacy of the least-squares fitting. A standard 
QC is given by a plot of the residuals versus the offsets or angles. 
Both one-term parameterizations yield an estimate of the data 
average, so the fit residuals of these models are identical. The 
residual plots show that neither of the one-term models fully 
represent the data variability since the residuals correlate as a 
function of incidence angle. But the residual QC does not tell us 
if the model parameter in one or the other model is biased. The 
residuals only tell us if the data variability is explained with the 
model parameter m̂0

1t( ) = Ŝ used.
To recap the key findings, the least-squares algorithm (fitting 

or inversion) with nonorthogonal basis functions only gives unbi-
ased model parameters when the model fully explains the data 
variability. When the model is misspecified, the least-squares 
algorithm finds an optimal fit of the data to the erroneous model 
by adjusting, and hence biasing, the reduced number of model fit 
parameters. Fit QCs based on the mismatch of the data to the 
model only tell us if the model parameters explain the data vari-
ability and not if the parameters are biased. Bias propagates into 
subsequent analysis; therefore, the possible systematic error due 
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to bias must be understood and accounted for. To this end, I now develop OVB in the 
context of linearized AVO fitting.

Bias in linearized AVO
We start with a linearized version of the Knott-Zoeppritz equations due to Aki and 

Richards (1980). Following Wiggins et al. (1983) and Shuey (1985) it can be rearranged to 
emphasize angle ranges:

RShuey ( ) = d
2

+
dVP

2VP
+

d
2

4VS
2

VP
2 2 dVS

2VS
+

d
2

sin2 ( )+ dVP

2VP
sin2 ( ) tan2 ( ). (3)

I will call this the Shuey approximation. Another rearrangement due to Gidlow et al. (1992) 
and Fatti et al. (1994) is: 

RFatti ( ) = 1+ tan2 ( )( ) dI P

2I P
8VS

2

VP
2

dIS

2IS
sin2 ( ) tan2 ( ) 4VS

2

VP
2 sin2 ( )  d

2
.      (4)

The Shuey parameterization is more often written using the three reflectivity shortcuts 

R 0( ) = d
2

+
dVP

2VP
= R +RVP

= RI P  
,

G =
dVP

2VP
2 2 d

+ 2 dVS

VS
= RVP

 4 2 2RVS
+R( ) = RI P

 8 2RIS
+R 4 2 1( ),

C =
dVP

2VP
= RVP

= RI P
R ,

(5)

where γ = VS/VP and for any variable x with values xuppper and xlower above and below the 
reflecting interface

dx = xlower xupper ,

x = 
xlower + xupper

2
,

Rx= VP ,VS ,( ) =
dx
2x

 .

(6)

When working only to lowest order, the contrasts of all elastic parameters are assumed 
small relative to their averages across the boundary. Wang (1999) and Mallick (1993) showed 
that at the next highest order a pseudo-quartic expansion of the Knott-Zoeppritz equations 
adds a single term:

3sin2 ( )cos( ) d
+ 2 dVS

VS

2

. (7)

For example, the linearized Shuey AVO model becomes:

RWang-Mallick ( ) = R 0( )+G  sin2 ( )+C  sin2 ( ) tan2 ( )+ 1
4

C G( )2  sin2 ( )cos( ).(8)

At both orders three and four, the 
AVO models of Shuey and Fatti are 
identical.

Figure 1 shows the full Knott-
Zoeppritz model as well as the Shuey 
and Fatti models at orders two, three, 
and four. An efficient way to under-
stand the model mismatch is to plot 
their respective residuals relative to 
the full Knott-Zoeppritz model, as 
shown in Figure 1b. In the develop-
ment of OVB, where we require a 
linearized model, I often treat the 
Wang-Mallick model as the ground 
truth. I find the higher-order correc-
tion to be significant in many published 
AVO examples. The validity of models 
always needs to be verified with a full 
modeling analysis.

Now, as in the toy model, we con-
sider what happens when we fit the data 
to misspecified models. We would like 
the least-squares fit at a given order to 
approximate the corresponding AVO 
model at that order. However, as seen 
in the toy model, this is not what the 
least-squares algorithm is designed to 
do. The least-squares algorithm 
attempts to match the data as best as 
possible, and it freely adjusts the avail-
able model parameters to do this.

Figure 2 shows this principle in 
action. In the first example (Figure 2a), 
the experimental data are the noise-free 
Wang-Mallick approximation of the 
Knott-Zoeppritz equation. In the sec-
ond example, the model is the noise-
free three-term Aki-Richards equation. 
In both cases, least-squares fitting with 
a two-term Shuey model gives good 
fits to the respective models4. This 
means that the model parameters pre-
dict data models for which they were 
not originally intended. In both cases, 
the fits are biased.

The least-squares algorithm esti-
mates model parameters by projecting 
the data onto the Moore-Penrose gen-
eralized inverse (Aster et al., 2005; 
Menke, 2012)5:

m̂ = AT A( ) 1
AT d = A gd .    (9)

4Of course, a single AVO model proves little, hence I provide a Jupyter notebook with this paper.
5To keep the equations uncluttered, I will ignore the data noise term.
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Fitting the data with less than these 
four basis vectors means choosing a 
design matrix omitting columns start-
ing from the right. Since our goal is to 
compare the inversion with the full 
design matrix A to one with a reduced 
set of variables, we identify these two 
sets of parameters with subscript i, for 
included, and o, for omitted, and split 
the design matrix and model vector into 
two corresponding parts:

d = Am = Aimi + Aomo

= Ai   Ao( )
mi

mo .

       (11)

We derive the least-squares solution 
of the model parameters with the full 
design matrix, in this notation, via the 
normal equations (A TA)m = ATd:

Ai
T Ai Ai

T Ao

Ao
T Ai Ao

T Ao

mi

mo
 =

Ai
T d

Ao
T d .

(12)

This gives two least-squares equations 
for the components mi and mo  that make 
up the full unbiased model vector. The 
equations are coupled via the off-
diagonal terms, given by the vector 
products, the correlations, of the 
included and omitted basis vectors. 
When all basis vectors are orthogonal, 
these off-diagonal contributions vanish, 
in which case the solution for the 
included and omitted variables decou-
ples, and we can fit the terms for the 
included and omitted variables inde-
pendently of each other. The solution 
for the first set of parameters is given by

m̂i = Ai
gd Ai

g Aom̂o .    (13)

In our toy model, this corresponds 
to R̂ 0( ) = Ŝ sin2 ( ) Ĝ. The first
term on the right-hand side is the solu-
tion to the regression with the subset of 
the variables denoted by subscript i. This 
is a regression with the incomplete 
model, such as a two-term AVO fit to 
data given by the Aki-Richards or 
Wang-Mallick equations. The second 

The only condition for a solution to exist is that the covariance matrix (A TA) is invertible. 
The matrix A(θ) consists of column vectors of the basis functions with which we express 

the data vector d(θ). For example, we can write the Wang-Mallick four-term AVO design 
matrix in Shuey notation as

AWang-Mallick =

1 sin2
min( ) sin2

min( ) tan2
min( ) sin2

min( )cos min( )
... ... ... ...
... ... ... ...
1 sin2

max( ) sin2
max( ) tan2

max( ) sin2
max( )cos max( )

.  (10) 

Figure 1. (a) The main AVO models used in this paper. Since OVB needs a linearized model, I use the four-term Wang-Mallick 
model to approximate the Knott-Zoeppritz equation. (b) Residuals of the models relative to the Zoeppritz model. Note: I plot 
some data points slightly offset in angle to make them more visible.

Figure 2. The two-term Shuey fit using a maximum angle of 35° matches (a) the four-term AVO model or (b) the three-term 
AVO better than the two-term AVO model. This is an expression of bias: To match the data, the two model parameters in the 
misspecified least-squares model adjust from their unbiased values to fit the data model with four or three parameters. 
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term on the right-hand side is the influence that the remaining variables with subscript o exert over the 
first set of variables with subscript i in the regression with the full design matrix. If we only regress with 
the terms of the matrix Ai, we obtain Ai

–gd, which is a partial, and hence generally biased, solution to the 
unbiased least-squares regression in the full model. Using the notation and color code for bias introduced 
earlier, we find that the result of such a partial regression is given by:

Ai
gd = m̂i + Ai

g Aom̂o

= unbiased variable + bias
= unbiased variable + data independent weight term  omitted variable(s).

                (14)

The model parameters estimated in the reduced regression (left-hand side) are equal to the unbiased least-
squares estimate of the model parameters in the full model (first term on right-hand side) plus a bias term. 
The bias term splits into a data-independent weight term, in the following also called bias weights, multiplied 
with the omitted variables. The weight term (matrix) Ai

–gAo has one entry for each combination of included 
and omitted variable.

As an example, solving equation 14 analytically for the Shuey two-term bias due to the omission of 
the curvature term, I find:

6The covariance of X and Y is cov(X, Y) E((X – E(X))E((Y – E(Y))). Covariance is positive when X and Y are above or below their expected values in 
unison, and negative if one of them having a positive fluctuation corresponds with the other having a negative fluctuation. If X and Y are independent, the 
covariance is zero; the reverse does not hold. The variance of X is given by var(X) = cov(X, X).

Ai= 2t( )
g d =

R̂(0) 2t( )

Ĝ 2t( )

=
R̂ 0( )

Ĝ
+

1
var sin2 ( )( )

sin4 ( ) sin2 ( ) tan2 ( ) sin2 ( ) sin4 ( ) tan2 ( )

cov sin2 ( ) ,sin2 ( ) tan2 ( )( ) 
Ĉ  .

(15)

A –g
i=(2t) is the design matrix for two-

term AVO, consisting of the first two 
left columns of the four-term Wang-
Mallick matrix equation 10. The 
angular brackets denote the  
average over all angles. The result is 
written in terms of a variance and 
covariance of the elements of the basis 
functions6. Figure 3 shows the weight 
terms due to the omission of the 
respective third term, in the case of 
Fatti and Shuey two-term AVO to data 
from a three-term Aki-Richards or 
from a four-term Wang-Mallick 
model. Both AVO models have rela-
tively small bias weights for the 
P-impedance contrast. Gradient bias
weights, however, are significantly
larger than the bias in the Fatti shear-
impedance reflectivity. To obtain the
bias, following equation 14, the Shuey 
bias weights are multiplied with the
P-velocity contrast, whereas the Fatti
bias weights are multiplied with the 
density contrast.

Figure 3. Bias weights in (a) Fatti and (b) Shuey two-term fitting. These weights multiply the omitted variable, i.e., for Fatti the 
density reflectivity and for Shuey the curvature (the P-wave velocity reflectivity), to give the total bias of this variable due to 
the omission of the third term. These weights are independent of the AVO model. Note the difference in scale.
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Systematic versus statistical errors in least-squares AVO fitting
Equation 14 can be rewritten to express the unbiased model 

estimates as a function of the biased least-squares model parameters 
from the fit of the reduced model and the unknown omitted 
variables. Figure 4a shows this for a reduced two-term Shuey 
model. I model the Shuey parameters R̂ 0( ) and Ĝ  as a function 
of the two-term model estimates and the two omitted variables 
for a Wang-Mallick data model with no noise. I have extended 
the model space for the omitted variables, the curvature and the 
γ value, well beyond physically meaningful values, since two- and 
three-term Shuey fitting impose such harsh and unphysical con-
straints on the solution space.

The results for the two- and three-term least-squares estimates 
fall along the curve with γ → ∞. In this limit, the quadratic cor-
rection term vanishes. In addition, the two-term model forces the 
solution of Shuey two-term AVO to C = 0. The two-term 

least-squares estimate of the gradient is significantly overestimated, 
whereas the intercept is underestimated; this anticorrelation is due 
to the off-diagonal element in the two-by-two covariance matrix 
of the Shuey two-term fit, which we also observe in AVO crossplots. 

Such forward modeling is not restricted to the Shuey AVO 
parameters. Because we know the relation of the Shuey param-
eters to the reflectivities of other elastic quantities, the modeling 
can be rewritten to visualize the impact on any two reflectivities. 
Figure 4b, for example, shows the dependency of the P- and 
S-impedances on the two biased least-squares fit parameters
in the Shuey model and the unknown two values of γ and
density reflectivity.

To put the systematic error into perspective, I compare it to 
the statistical error for the gradient. I run 2000 realizations of 
the data model with different homoskedastic random noise. In 
Figure 5, I plot the distributions of the two-term fits with maxi-

mum angles of 25° and 35°; for com-
parison, I also show the gradient dis-
tribution of a three-term fit to 35°. In 
this case, and with the chosen noise 
variance (a user parameter in the for-
ward modeling), the systematic error 
due to the higher-order correction 
dominates the error analysis.

Elastic reflectivities with bias
In the presence of bias, we must 

adapt AVO workflows comparing for-
ward-modeled data with AVO results 
from least-squares fitting. Consider, for 
example, the calculation of χ-angles in 
fluid-lithology analysis, and assume, for 
simplicity, that the three-term Aki-
Richard model describes the full vari-
ability of the data. While the model 
gradient is perpendicular to the model 
intercept, χG = 90°, this is no longer true 
for biased least-squares estimates of the 
gradient, due to the leakage of omitted 
variables Ĝ 2t( ) = Ĝ 2t( ) + biasĜC . Using 
a generic Gardner relation (Gardner 
et al., 1974), C = cR̂ 0( ) 2t( ) , the χ-angle 
for the least-squares gradient estimate 
with bias is given by:

tan Ĝ 2 t( )( ) = 1
cbiasĜ

.      (16)

With a typical value of c = 0.8 and a 
conservative bias weight of 0.25, the 
gradient is rotated toward the intercept 
by more than 10°.

Figure 4. A two-dimensional uncertainty analysis of two-term AVO Shuey fitting when the true data variability is given by the 
Wang-Mallick model. The least-squares fit results are obtained with a maximum angle of 35°. (a) Following the fit with two 
terms, I model unbiased values of the Shuey intercept and gradient as a function of γ and C = R(0), using equation 23 to solve 
for  m̂i . In (b), the modeling is performed for the P- and S-wave reflectivities, with γ and density reflectivity Rρ as parameters. 
Four values of γ are modeled (indicated by the colored circles), one of which γ = 1000 (only for panel [a]) mimics the case of 
infinitely large γ and hence corresponds to vanishing higher-order correction. Both two- and three-term fit results fall on this 
curve. In addition, the two-term fit result must satisfy C = 0.
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To derive the most general elastic reflectivity in three-term Shuey space, we write the 
linearized three-term Shuey AVO in terms of the reflectivities of P-wave velocity, S-wave 
velocity, and density, but with the addition of the bias:

R̂ 0( )

Ĝ
C

=

1+ biasR̂ 0( ) 0 1

1+ biasĜ
8
2

4
2

1 0 0

RVP

RVS

R

.                (17)

The bias terms are the weights previously calculated. We need the inverse of this relation:

RVP

RVS

R
=

0 0 1
1
2

2

8
1
2

1+
2

4
+

1
2

2

4
biasĜ + biasR̂ 0( )

1 0 1 biasR̂ 0( )

R̂ 0( )

Ĝ
C

.    (18) 

Any elastic reflectivity can be written as a linear combination of the three fundamental 
elastic parameters (Ball et al., 2014a; Connolly, 2019):

Rx = c1 c2 c3( )
RVP

RVS

R

. (19)

Now insert the expression we already calculated, equation 18, and keep simplifying to find

Rx = R̂ 0( ) 1
2

c2 + c3 +Ĝ
2

8
c2 +C c1 + c2

1
2

1+
2

4
c3

+ C c2
1
2

2

4
biasĜ + biasR̂ 0( ) c3biasR̂ 0( ) . 

  (20)

Equation 20 is the generalization 
to arbitrary elastic reflectivities of the 
relation between unbiased and biased 
parameters in two-term AVO fitting. 
It expresses the unbiased elastic reflec-
tivity Rx in terms of the biased least-
squares estimates of the Shuey intercept 
and gradient, the bias weights calcu-
lated analytically from the design 
matrix of the AVO fit, and the two 
unknowns C and γ. Setting the bias 
weights to zero for both parameters 
recovers equations from forward mod-
eling. Extensions to the method are of 
course possible, such as expressing the 
unbiased elastic reflectivities Rx in 
other AVO models. This can also be 
used to create analytic relations 
between biased fit parameters in dif-
ferent AVO models. 

To express equation 20 in terms of 
a χ-angle we use a two-dimensional 
AVO space and write Rx as a weighted 
sum of Shuey intercept and gradient. 
We eliminate the curvature via a gen-
eralized Gardner’s relation (Gardner 
et al., 1974) C = cR̂ 0( ) 2t( ), relating the 
curvature to the least-squares estimate 
of the intercept. Then,

Figure 5. Analysis of gradient bias with homoskedastic 
noise: The plot in (a) shows boxplots of the gradient 
values from a Monte Carlo run of two- (2T) and three-
term (3T) least-squares fitting with a Shuey AVO model. 
In all cases, the data are modeled with a four-term 
Wang-Mallick linearized AVO model to which I add 
Gaussian noise. I include a two-term fit with a smaller 
angle range to 25°. In (b), I show the bias of the gradient 
in the noise-free case similar to the analysis of Figure 4; 
each point corresponds to a model gradient based on 
the two-term least-squares fit result to 35° and with 
the omitted variables γ and C/R (0) as parameters. Four 
values of γ are modeled, as before, and color coded. 
Due to the importance of the higher-order corrections 
for this AVO model, all of these fits are significantly 
biased and disagree with the model result, even taking 
statistical errors into account.
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tan x( ) =

2

8
c2

1
2

c2 + c3 + c c1 + c2
1
2

1+ biasR̂ 0( )( )+
2

4
1+ biasĜ( ) c3 1+ biasR̂ 0( )( )

  . (21)

As for the reflectivity, setting the bias weights to zero recovers the conventional χ-angles 
from forward modeling.

For example, using the simple case where γ = 2, the χ-angle for the shear-impedance 
reflectivity RIS  in terms of the biased model estimates is 

c1 c2 c3( )IS

= 0 1 1( )  ,

RIS
=

1
2

R̂ 0( ) 1+ c biasĜ  biasR̂ 0( )( )( ) 1
2

Ĝ  ,

tan IS( ) = 1
1+ c biasĜ  biasR̂ 0( )( )

 .
              (22)

Since the gradient bias is significantly larger than the intercept bias, the χ-angle for RIS
 

is rotated toward the intercept axis, like the gradient example above. Elastic reflectivities 
Rx with positive c2 weight are rotated toward the intercept axis, a negative c2, such as for 
VP /VS and λ, means a correction to higher angles relative to R(0).

Equation 22 shows how the model relation between RIS
 and the Shuey parameters,

2RIS
= R 0( ) G , valid for VP /VS = 2, proposed by Wiggins et al. (1983), is altered in 

least-squares model parameter space. This was also observed by Causse et al. (2007) and 
by Thomas et al. (2016). The solution proposed by Thomas et al. (2016) is subtly different 
from mine. Their analysis relates least-squares model parameters in different AVO models, 
both potentially biased. Just like the bias weights, the conversion is given in terms of the 
design matrices (Ball et al., 2014b; Thomas et al., 2016): 

m̂model b = Amodel b
g Amodel am̂model a . (23) 

These authors suggested to use this relation to convert highly biased two-term model 
estimates, such as a two-term Shuey AVO fit to large maximum angle, to “a low-residual 
domain such as the Fatti domain” (Ball et al., 2014b). This works well when the chosen 
reference AVO model and the relevant AVO model parameters m̂model b  are near bias free. 
OVB and equation 20, by contrast, relate the biased parameters to the bias-free model and 
hence provide a unique relationship between any linearized AVO parameterization and the 
unbiased model space.

Discussion and conclusion
This paper shows how to calculate exactly the bias due to misspecified models in 

least-squares parameter estimation. To do this, I introduced OVB, a technique well 
known in least-squares analysis in the context of econometric data analysis (Greene, 
2003) but that I have not yet seen applied to geophysical data analysis. I showed how 
OVB can be applied to analysis of linearized isotropic AVO models, both analytically 
and numerically. For misspecified models, such as two-term AVO fitting with large angle 
range or with large contrasts, OVB provides relations between the biased and unbiased 
least-squares model parameters. Using relative rock physics, I showed how bias propagates 
into other elastic reflectivities. Equation 20, or its corresponding version for other AVO 
models, can be used to build tables of unique relative rock property relationships for any 
AVO model, which replace the unbiased, forward-model results. The resulting equations 
can be used to forward model unbiased AVO quantities, using the least-squares fit results, 
the weights given by OVB analysis, and the omitted variables. This analysis can also be 
used to make informed decisions on maximum AVO fit angles. However, to do so in a 
meaningful manner, other sources of bias, such as angle errors, ignoring anisotropy, and 

wavelet variations with offset, need to 
be accounted for — a task beyond the 
scope of this paper.

Various orthogonal AVO schemes 
have been proposed, such as with 
orthogonal polynomials (Johansen 
et al., 1995), using data-driven principal 
component analysis (PCA) (Saleh and 
de Bruin, 2000; Cambois and 
Herrmann, 2001) or using model-based 
PCA (Causse et al., 2007). In these 
schemes, the orthogonality of the cova-
riance matrix decouples the least-
squares model parameters, making 
them bias free and allowing us to fit 
consecutive higher-order terms without 
having to redo a full parameter fit. The 
decorrelation also makes orthogonal 
AVO parameters better suited to AVO 
crossplot analysis. 

In any of these orthogonal AVO 
parameterizations, the model fit param-
eters are different from the ones origi-
nally proposed in the AVO linearized 
models. This was evident in the toy 
model, where the first term in the 
orthogonalized Shuey scheme is the 
stack and hence a mix of the original 
Shuey parameters of all orders in the 
AVO model. Following an orthogonal 
fit, we may choose to transform back to 
the original AVO model of choice. 
However, transforming from the 
orthogonal parameters to the original 
parameters reintroduces bias unless the 
full variability of the data has been 
explained in the orthogonal fit.

If we wish to project into a lower-
dimensional AVO space, such as 
χ-angle space, we need to take into 
account uncertainties in the missing 
variables, as shown in Figure 4. At 
this stage, additional constraints, and 
prior information from rock physics, 
relating to the omitted parameters, 
could also be introduced and used to 
further derisk the AVO inversion. At 
the very least, as shown in the discus-
sion of the impact of bias on χ-angles, 
the OVB analysis provides guides for 
the direction of the bias as it propa-
gates from our fit parameters to other 
elastic reflectivities. It tells us which 
derived ref lectivities are system- 
atically under- or overestimated. These 
results should be valid even if further 
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limitations, such as those of the Knott-Zoeppritz model itself, 
or other sources of bias, such as heteroskedastic noise, come 
into play.

I applied OVB to isotropic linearized AVO. However, the 
theory of OVB is general and applicable whenever a misspecified 
model is used in least-squares fitting or inversion. It therefore should 
be of use in other areas of seismic imaging and inversion. 
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