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Characterization of a carbonate geothermal reservoir 
using rock-physics-guided deep neural networks

Abstract
Deep neural networks (DNNs) have the potential to streamline 

the integration of seismic data for reservoir characterization by 
providing estimates of rock properties that are directly interpretable 
by geologists and reservoir engineers instead of elastic attributes 
like most standard seismic inversion methods. However, they 
have yet to be applied widely in the energy industry because 
training DNNs requires a large amount of labeled data that is 
rarely available. Training set augmentation, routinely used in 
other scientific fields such as image recognition, can address this 
issue and open the door to DNNs for geophysical applications. 
Although this approach has been explored in the past, creating 
realistic synthetic well and seismic data representative of the 
variable geology of a reservoir remains challenging. Recently 
introduced theory-guided techniques can help achieve this goal. 
A key step in these hybrid techniques is the use of theoretical 
rock-physics models to derive elastic pseudologs from variations 
of existing petrophysical logs. Rock-physics theories are already 
commonly relied on to generalize and extrapolate the relationship 
between rock and elastic properties. Therefore, they are a useful 
tool to generate a large catalog of alternative pseudologs represent-
ing realistic geologic variations away from the existing well loca-
tions. While not directly driven by rock physics, neural networks 
trained on such synthetic catalogs extract the intrinsic rock-physics 
relationships and are therefore capable of directly estimating rock 
properties from seismic amplitudes. Neural networks trained on 
purely synthetic data are applied to a set of 2D poststack seismic 
lines to characterize a geothermal reservoir located in the Dogger 
Formation northeast of Paris, France. The goal of the study is to 
determine the extent of porous and permeable layers encountered 
at existing geothermal wells and ultimately guide the location 
and design of future geothermal wells in the area.

Introduction
The aquifer of the Dogger Formation is the main hot water 

and heat supplier for approximately 40 low-enthalpy geothermal 
plants currently operating in the Paris Basin. The success of such 
geothermal projects relies on the quality of the reservoir (i.e., 
temperature, porosity, and permeability). If the reservoir proper-
ties encountered along the geothermal wells fall short of require-
ments, the project may not be profitable or, in the worst-case 
scenario, may need to be abandoned. Although the Dogger 
Formation has been in use for more than four decades, sources 
of information from which to infer these key reservoir 
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characteristics are unfortunately scarce. These sources are mainly 
limited to wireline logs and cores at the well locations and analysis 
of rock samples where the formation outcrops at the edges of the 
basin hundreds of kilometers away from the zone of interest. 
While seismic data are available, albeit limited to series of old 
2D lines, they have so far mainly been used to collect structural 
information such as depth and thickness of the target interval. 
While future 3D seismic acquisitions will provide higher-quality 
data with better lateral coverage, several techniques offer ways 
to retrieve more information from the existing seismic lines. 
Extensively used in the oil and gas sector, seismic inversion is a 
standard way to derive elastic properties from recorded seismic 
amplitudes and infer rock properties away from well control by 
using deterministic and statistical relationships between elastic 
and rock properties. Machine learning techniques based on neural 
networks have also been used for some time to estimate elastic 
and rock properties from seismic data. These supervised learning 
algorithms establish a statistical relationship between log and 
seismic data at the well locations. The relationship is then applied 
to the seismic data to predict properties of interest at any location 
within the seismic survey. 

While early neural networks such as probabilistic neural 
networks have been successful in predicting elastic properties 
(Hampson et al., 2001), estimating rock properties has proved to 
be more challenging. Considerable expertise is required to repro-
duce the combination of highly nonlinear rock-physics theories 
and convolutional seismic modeling with their relatively simple 
architecture. More advanced neural network architectures, such 
as deep neural networks (DNNs) and convolutional neural net-
works, are actively being developed to address this limitation 
(Feng et al., 2020) and broaden application in the energy industry. 
Unfortunately, such state-of-the-art networks require a very large 
amount of data to be trained, which has so far severely limited 
their applicability for hydrocarbon and geothermal exploration 
projects. Although the idea of supplementing synthetic data to 
augment the size of the training set has been explored several 
times in the past (Balz et al., 1999), statistical methods have 
mostly been employed to simulate synthetic pseudowells. There 
is no guarantee that pseudologs created with these techniques 
follow the same rock-physics laws as the original logs. As a result, 
they may not be realistic scenarios away from the existing wells. 
To address this issue, Downton et al. (2020) introduced a novel 
hybrid theory-guided approach to the generation of synthetic 
data, which combines the use of theoretical rock-physics models 
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and statistical simulations. This methodology is applied in our 
study to generate hundreds of pseudowells to train deep feed-
forward neural networks (DFNNs) for deriving the total porosity 
and volume of clays in the Dogger Formation from recorded 2D 
full-stack seismic lines. These two rock properties are used to 
compute the effective porosity, from which an absolute permeability 

is derived based on laboratory measurements on core data. Results 
have highlighted a set of relatively continuous porous and permeable 
layers that will be considered in the design of future geothermal 
wells in the area.

Lithostratigraphic overview of the Dogger Formation
The Dogger Formation of the Paris Basin consists of a pre-

dominantly limestone assemblage located between marls from 
the Lias and Malm epochs. The main reservoir units, illustrated 
in Figure 1, are found within the upper part of the Dogger 
Formation and result from the development of shallow and 
granular carbonate facies during the Bathonian and Callovian 
ages. The base of the Bathonian is characterized by repeated 
sequences of marls, bioclastic limestones, and calcarenites as part 
of a large regression that spans the development of a wide carbon-
ate platform centered in the central and eastern Paris Basin. It 
consists mainly of oolite shoals (Oolithe Blanche Formation), 
which are the major productive horizons for geothermal energy. 
The progressive amalgamation of these shoals resulted in the 
construction of a large barrier that protected a wide inner ramp 
to lagoon environment, the expansion of which culminated with 
the Comblanchien Formation at the end of the Bathonian. This 
unit hosts a quarter of the productive horizons in oolite-rich 
levels with a complex diagenetic history. While these reservoir 
facies are easily identified on well logs and outcrops, the objective 
of the present study is to establish if the existing poststack seismic 
lines can help track the lateral extent of these layers away from 
the existing wells and reveal if the porosity and permeability 
within the layers are fairly homogeneous.

Joint petrophysical and rock-physics analysis
Although 34 wells are in the study area, only four, used for 

hydrocarbon exploration, have a suite of logs (gamma ray, neutron 
porosity, density, resistivity, and sonic) suitable for quantitative 
reservoir characterization. A statistical mineral volume estimation 
using multilinear regressions is performed based on edited versions 
of these raw logs. The resulting mineral volumes and porosity 
logs for one of these wells are displayed in Figure 2. While core 
measurements are available to calibrate and validate the estimated 
porosity log, the absence of mud logs and cuttings means the 
mineral volumes remain more uncertain. To help control the 
quality of these volumes, a rock-physics-based approach is used. 
Elastic logs predicted by theoretical rock-physics models from 
the mineral volumes and porosity are compared with available 
measured logs. An initial analysis was performed and evaluated 
based on the match of density and P-wave velocity. While this 
initial estimation was satisfactory at the time, the subsequent 
addition of S-wave velocity data from two wells located outside 
the study area highlighted how the model was unable to reproduce 
low velocity ratios (VP /VS) in some intervals of the Dogger 
Formation. This observation, coupled with the fact that dolomi-
tization in the Comblanchien and Dalle Nacrée units has been 
reported southeast of Paris (Brosse et al., 2010), led to a revision 
of the rock mineral composition and the introduction of dolomite 
to better explain the velocity ratio in these intervals. Figure 3 
illustrates the main porosity trends observed in the well data. A 

Figure 1. Top: Simplified stratigraphic column of the Dogger Formation located northeast 
of Paris. Bottom: Analog outcrops and thin sections of the main reservoir units (A, B, 
and C) located in the Bathonian and Callovian formations southeast of Paris (adapted 
from Brosse et al., 2010).
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large variability is observed in the marls above and below the 
limestone formation, which can be correlated to a wide range of 
volume of clays, as highlighted by the rock-physics templates. 
By contrast, the velocity-porosity relationship in the clean lime-
stone intervals is well defined with very little variation away from 
the main trend. It can be satisfactorily reproduced by the cemented 
sandstone model described in Allo (2019). Based on thin-section 
observations and core-plug analysis, 1% of calcite contact cement 
is used in the model. The presence of this small amount of cement 
explains both the high velocities recorded in the limestones and 
their relatively high porosity. By welding oolites together, the 
cement contributed to a considerable increase in rock stiffness. 
At the same time, it prevented much of the mechanical compaction 
that usually occurs as sediments get buried. The increasing stress 
applied to the rock during burial, which would relax through a 
rearrangement of oolites when no cement is present, resulted in 
pressure dissolution at the contact points and strained oolites 
that deformed and cracked, as can be seen on the thin section of 
the Oolithe Blanche Formation in Figure 1c. The match between 
predicted and measured elastic logs, illustrated in Figure 2, 
underlines the importance of running a joint petrophysical and 
rock-physics analysis to produce a consistent set of rock and elastic 
properties. This ultimately improves the reliability of the rock 
properties derived from wireline logging through the integration 
of theoretical rock-physics models instead of purely statistical 
methods. This also highlights the role of rock physics as a quality-
control tool for petrophysical analysis.

Synthetic data generation
As discussed in the previous section, only four wells have a 

measured compressional sonic log, which is required to compute 
a zero-offset synthetic seismic trace. The data from these four 

wells only are insufficient to train DFNNs. Therefore, synthetic 
pseudowells were derived from the existing logs to augment the 
size of the training data set. Prior geologic knowledge of the area 
of interest is used to make the pseudowells realistic alternative 
subsurface scenarios away from the existing wells. Figure 4 illus-
trates the process followed to create an alternative synthetic 
petrophysical log from an existing one. Because well logs are 
nonstationary, each original well is first broken down into intervals 

Figure 2. Petrophysical analysis at one of the exploration wells. Mineral volumes (track 6) and porosity (track 7) are computed from a set of petrophysical logs (tracks 1 to 5) using 
multilinear regressions. Quality controls include core measurements (red dots in track 7) and elastic log predictions from rock-physics models (red curves in tracks 8 and 9).

Figure 3. Rock-physics templates based on the cemented sandstone model superimposed 
on log data color coded by gamma ray. The red line, obtained with 1% of cement, fits the 
main trend observed in the clean cemented limestones. The pink lines, obtained with no 
cement, delimit marls with an increasing volume of clays (10% for the top line and 70% for 
the bottom line).
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wells are included in the training set, which means they can be 
used as blind wells to evaluate the quality of the network output. 
It is important to note that, while the rock-physics models are 
not directly included in the neural networks, the networks are 
trained on data computed by the models and therefore indirectly 
reproduce the theoretical relationships between rock properties 
and elastic attributes. The networks are referred to as “rock-physics 
guided” rather than “rock-physics driven” for this reason.

Evaluation of neural network performance on synthetic data
A DFNN with three hidden layers of 20 nodes is used to 

estimate total porosity directly from seismic amplitudes. Trained 
on 75% of the synthetic data, it converges in less than 500 itera-
tions, and a validation error of 16.6% is obtained with the remain-
ing 25% of data. Prior to applying the DFNN to the real seismic 
lines, tests were run to evaluate its performance in controlled 
conditions. Synthetic seismic data are derived from an existing 
3D model of the subsurface, populated with porosity and volume 
of clays, and taken as ground truth to which the DFNN results 
are compared. The calibrated rock-physics models are first applied 
to compute the acoustic impedance in the 3D model. A zero-offset 
synthetic 3D seismic cube is then generated by convolving the 
impedance contrasts with the statistical zero-phase wavelet. In 
addition to the seismic cube, a low-frequency porosity model is 
provided as input to the DFNN. This low-frequency model is 
obtained by applying a high-cut frequency filter (10–15 Hz) to 
the ground-truth porosity model. 

The first test consists of applying the DFNN to the 3D syn-
thetic seismic cube and is designed to evaluate the ultimate 
performance of the methodology when applied to ideal seismic 
data free of any acquisition- or processing-related uncertainties. 
Figure 5 illustrates the porosity obtained in this test and shows 
that the DFNN manages to qualitatively recover the main varia-
tions in rock properties and achieves a reasonable quantitative 
match with the average mean absolute percentage error (MAPE) 
computed by equation 1 close to 23.5% in the reservoir interval:

MAPE =100 1
N t

1
Ni

Pi Mi

Mi
i=1

Ni

t=1

N t ,           (1) 

where Nt is the number of seismic traces, Ni is the number of 
samples per trace, Mi is the model value, and Pi is the 
predicted value. 

The second test consists of applying the same neural network 
to a more realistic version of the synthetic seismic data obtained 

of homogeneous rock properties, within which statistics are 
considered stationary. The background trend for each rock property 
input into the rock-physics models is then constructed through a 
linear regression per interval. Alternative background trends for 
the synthetic petrophysical logs are obtained through modifications 
of these original trends. Variations in rock properties can be 
simulated by shifting or scaling the trend in each interval. The 
thickness of each layer can also be modified to represent lateral 
depositional variations. The resulting modified background trends 
are meant to represent potential variations away from well control 
and help increase the geologic information contained in the 
training set. A variographic analysis is then conducted on the 
original log to estimate how quickly the rock property varies with 
depth. The resulting vertical variogram is used to constrain the 
vertical continuity or high frequency of the simulated logs. The 
high-frequency variations are added to the modified background 
trends to construct the synthetic petrophysical logs. In this case 
study, the thickness of the overburden and reservoir layers is 
modified, as well as the porosity and volume of clays in the reservoir 
layers. Table 1 summarizes the list of systematic changes applied 
to each of the original four wells. Altogether, 324 pseudowells 
were created by the combination of all these scenarios. The simu-
lated petrophysical curves are input into the calibrated rock-physics 
models to calculate synthetic density and P-wave velocity curves. 
Synthetic zero-offset seismic traces are obtained by convolving 
the reflectivity series extracted from the synthetic elastic logs with 
the statistical zero-phase wavelet derived from the spectral analysis 
of the seismic lines. The set of synthetic petrophysical logs and 
seismic traces is used to train the DFNN. None of the original 

Figure 4. Simulation of a realistic synthetic porosity log. A background trend (red curve 
in track 1) is first extracted from an original log (black curve in track 1) and represents 
the main evolution in the log with depth. This trend is then modified to represent 
potential geologic variations away from the original well location. Arrows in track 2 
highlight a 30% porosity increase in zone A and a 100% increase in thickness for zone B. 
High-frequency variations (track 3) based on the original log vertical variability are added 
to the modified trend (green curve in tracks 2 and 4) to construct the synthetic porosity 
log (black curve in track 4).

Table 1. List of systematic changes applied to the four original wells to simulate alternative 
pseudowells. All possible permutations of changes result in the creation of 81 (34) 
pseudowells per original well.

Reservoir property Scenarios

Overburden Layer thickness [−5%, 0%, +5%]

Reservoir Layer thickness [−5%, 0%, +5%]

Porosity [−0.05, 0, 0.05]

Clay volume [−0.1, 0, 0.1]
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by adding random noise to the seismic cube used in the first test. 
To simulate representative noise, the same signal-to-noise ratio 
of approximately 5 and the same frequency content as observed 
on the real seismic lines are used. The second test is designed to 
estimate the extent to which the presence of noise biases the 
estimated rock properties. Figure 6 illustrates how some of the 

noise is carried over in the rock-property estimates because it is 
interpreted as input signal by the neural network. The average 
MAPE in this case increases to 40.5%, rendering the estimated 
rock properties worthless for quantitative use. 

Based on this observation, a second neural network is trained 
on noisy synthetic traces generated from the same set of pseudow-
ells. The role of the third test is to establish if the presence of noise 
in the training data helps remove some noise from the rock-property 
estimates. The noisy seismic traces are obtained by adding a random 
noise to the raw synthetic traces from the pseudowells with the 
same characteristic signal-to-noise ratio and frequency content as 
the one added to the 3D synthetic seismic cube. The second neural 
network outperforms the first when applied to the noisy 3D 

Figure 5. Total porosity estimation from ideal seismic data. (a) Porosity model taken as 
ground truth. The reservoir interval is delimited by the black horizons. (b) Input zero-offset 
synthetic seismic generated from the true porosity model. (c) Low-frequency porosity 
model given as input to the DFNN. (d) Porosity estimated by the DFNN trained on ideal 
synthetic seismic traces created from the pseudowells. The true porosity model is 
displayed at selected well locations on (c) and (d).

Figure 6. Total porosity estimation from noisy seismic data. (a) Input noisy synthetic 
seismic created by adding random noise to the original synthetic seismic shown in Figure 5. 
(b) Porosity estimated by the DFNN trained on ideal synthetic seismic traces. (c) Porosity 
estimated by a DFNN trained on noisy synthetic seismic traces. The true porosity model is 
displayed at selected well locations on (b) and (c).



Special Section: Quantitative interpretation756      The Leading Edge      October 2021 

synthetic seismic cube with the average MAPE decreasing to 
30.9%. While still far from the ultimate performance of the original 
DFNN, a large portion of the noise present in the input seismic 
data does not end up in the estimated rock properties. It appears 
that the noise added to the training set is taken into account by 

the second DFNN and used to partly reproduce the observed 
noise. This third test illustrates the level of uncertainty to be 
expected in practice when estimating porosity from real seismic 
data with this type of neural network.

Application of neural networks to acquired seismic sections
The DFNN trained on noisy synthetic data is applied to five 

recently reprocessed full-stack seismic 2D lines acquired in the 
1980s. While this DFNN derives total porosity from the seismic 
amplitudes, only effective porosity is of interest for geothermal 
applications because a fluid needs to be able to circulate in the 
pore space. For this reason, a volume of clays is estimated with a 
second DFNN also trained with purely synthetic data. An effective 
porosity is then derived from the total porosity and clay volume 
by application of equation 2:

ϕE = ϕT (1 – Vclay). (2)

Figure 7 shows the estimated porosities and clay volume along 
one of the sections crossing the area from west to east. A low 
volume of clays and some very porous layers are predicted at the 
top of the Dogger Formation, which is consistent with what is 
observed on the analog outcrops (Figure 1) and at some nearby 
geothermal wells. Layers with high total porosity but also high 
clay content and low effective porosity are predicted immediately 
above and below the main reservoir interval. These layers corre-
spond to clay-rich marls, with large internal porosity filled with 
bound formation water, that are of no use for the circulation of 
geothermal fluids. Without estimating the volume of clays and 
the effective porosity, these layers could have been misinterpreted 
and erroneously classified as reservoir facies. Absolute permeability 
is not estimated directly from the seismic amplitudes but rather 
computed from the effective porosity by application of equation 3 
statistically derived from laboratory core measurements:

log(K ) = –2.04 + 30.15ϕE – 34.16ϕ2
E.             (3)

Figure 7. (a) Input seismic section crossing the study area from west to east. The top horizon 
represents the top of the Dogger Formation. The bottom horizon corresponds to the top of the 
marls with Ostrea acuminata (Middle Bajocian). (b) Estimated total porosity showing porous 
layers in the upper part of the Dogger Formation, which correlates with logs from nearby wells. 
(c) Estimated clay volume confirming that most of the upper part of the Dogger Formation 
consists of clean limestones. (d) Effective porosity obtained by combining the estimated total 
porosity and clay volume highlighting layers with high connected porosity.

Figure 8. Absolute permeability derived from the estimated effective porosity. Several 
high-permeability layers are clearly visible in the upper part of the Dogger Formation and 
represent potential conduits for geothermal fluid circulation. The permeability displayed at 
the well locations is computed from the effective porosity logs using the same porosity-
permeability law.
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Figure 8 shows the resulting permeability along the seismic 
line. Several highly permeable layers can be identified at the top 
of the Dogger Formation and represent a potential target to 
consider during the design of future geothermal wells in the area. 
Variations in effective porosity and permeability are visible in 
these layers and could be linked to the diagenetic history of this 
formation, which has seen several phases of dissolution and 
cementation and resulted in a complex pore-space geometry.

Neural networks versus seismic inversion
In order to further evaluate the robustness and quality of 

the estimated rock properties, an acoustic inversion is run on 
the same 2D seismic lines. Polynomial laws statistically derived 
from log data are then used to transform the resulting acoustic 
impedance into total porosity. Because limestones and marls 
have very distinct elastic behavior, different laws are applied in 
the reservoir interval (limestones) and in the overburden and 
underburden intervals (marls). Figure 9 shows a comparison of 
the total porosities obtained with the DFNN and from the 
inverted acoustic impedance. A reasonably good qualitative 
match is observed in the middle of the reservoir interval with 
similar highly porous layers highlighted by both techniques. 
However, a clear mismatch is visible at the top and in the lower 
part of the reservoir interval. Application of the limestone law 
to clay-rich marls is believed to be the main cause of this sub-
stantial porosity overestimation. Such issues are often resolved 
by running a seismic facies classification prior to applying the 
facies-dependent impedance-porosity laws. However, a classifica-
tion solely based on acoustic impedance, the only elastic attribute 
recoverable from full-stack seismic data, does not reduce the 
uncertainty significatively in this case due to the large overlap 
between the impedance distributions of limestones and marls. 
The use of neural networks turned out to be more user friendly 
and faster than this multistep inversion-based approach. Another 
potential advantage of neural networks over seismic inversion 
in this case is the frequency content of the output porosity. 
Although the low-frequency model used in both cases is limited 
to 15 Hz, the porosity obtained with the DFNN has a higher-
frequency content. This is mainly due to the different size of 
convolutional operators used in the two techniques. While the 
seismic inversion uses a zero-phase wavelet with a breadth of 
40 ms (time interval between the center of the two main side 
lobes), the DFNN is trained with three-point operators equating 
to a breadth of 6 ms. Therefore, more geologic detail can be 
resolved from the band-limited seismic data, which is critical 
for finely layered heterogeneous reservoirs.

Limitations and pitfalls
While the presented workflow is attractive in its ability to 

extract geologic information from seismic data, it is important to 
be aware of its limitations and pitfalls. First, due to the use of 
band-limited seismic as input data, a low-frequency model of the 
property of interest needs to be supplied to the neural network to 
obtain a reliable quantitative estimate. The estimated rock proper-
ties are strongly dependent on the input low-frequency model, 
which represents a severe limitation when well data are very scarce 

or of poor quality. This is the main reason why deriving permeabil-
ity directly from seismic amplitude was not attempted in this 
study. Creating a realistic 3D low-frequency permeability model 
from core data only was not possible. Acquisition of new seismic 
surveys in the area should alleviate part of this issue by including 
information at frequencies lower than the current 15 Hz limit 
and could arguably remove the need for a low-frequency model 
altogether in the case of broadband seismic acquisition. The use 
of newly acquired seismic data would also be an opportunity to 
take into account amplitude variation with offset by feeding partial 

Figure 9. Comparison between total porosities obtained from DFNN and seismic inversion. 
(a) Total porosity estimated with DFNN. The black dotted lines delimit the highly porous 
oolitic layers in the upper part of the Dogger Formation. (b) Total porosity derived from 
inverted acoustic impedance using statistical polynomial laws (bottom) for limestones (red 
line) and marls (pink line).
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stacks or even gathers to the neural networks instead of a single 
full-stack cube such as in the present study. This has the potential 
to increase the robustness of rock-property estimates as historically 
demonstrated with seismic inversion techniques.

Another pitfall that was highlighted during tests to estimate 
total porosity was the strong sensitivity of the neural networks to 
the amplitude of the different input data. Any scaling of the input 
seismic traces results in a scaling of the output rock properties. 
While conventional seismic well-tie analysis is usually performed 
to ensure a proper synthetic seismic amplitude calibration, the 
fact that none of the wells are located on or close to the seismic 
lines means that no such analysis was possible. The only alternative 
was to compare the overall energy of the synthetic and real seismic 
traces in the window of interest via spectral analysis. In addition, 
while not the case in this study, any significant seismic amplitude 
variations caused by illumination and/or absorption effects need 
to be either compensated for or considered when generating the 
synthetic seismic traces of the training set. Failure to do so would 
see these amplitude variations translated into erroneous rock-
property changes.

To conclude, while generating synthetic pseudowells is an 
undeniable asset for studies with sparse data, the simulated sce-
narios need to rely on sound geologic information. Introducing 
unrealistic property variations results in a synthetic training set 
that is not representative of the zone of interest and ultimately 
leads to biased rock-property estimates.

Conclusion
DFNNs have been applied to predict the porosity and perme-

ability of the Dogger Formation northeast of Paris from 2D 
reprocessed full-stack seismic lines acquired in the 1980s. The 
amount of data needed to train such neural networks meant that 
the original well and seismic data were insufficient to obtain 
meaningful estimates and required the generation of synthetic 
data. A set of realistic pseudowells was simulated through the 
combination of statistical simulations and the application of 
theoretical rock-physics models. The effective porosity and perme-
ability sections obtained from the neural networks output, while 
uncertain quantitatively, revealed the position and extent of 
several layers that could prove to be favorable landing areas for 
future geothermal wells in the area. Beyond this application to 
a geothermal study, the ability to train neural networks on 

synthetic data makes them a practical alternative to seismic 
inversion for any type of studies where well-log data are either 
limited or of poor quality. 
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