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Summary 

Full waveform inversion (FWI) is becoming an increasingly 
dominant force in velocity model building and seismic 
imaging, often providing us with unrivaled focusing and 
resolution of the subsurface image. The superior velocity 
models and seismic images achieved through FWI also 
enable serious and more meaningful discussions of 
uncertainties on FWI. While the Bayesian inference 
framework offers a general foundation for FWI uncertainty 
analysis, the high computational cost associated with 
classical algorithms, such as Monte Carlo methods, to 
sample the posterior distribution prohibits it from being 
applied to industrial-scale problems. The recent 
development of variational inference (VI) theory presents a 
promising alternative to traditional sampling algorithms, as 
it can generate reasonable estimations of the posterior 
distribution at a more affordable computational cost. In this 
abstract, we describe an FWI uncertainty analysis method 
based on a specific type of VI algorithm, the Stein 
variational gradient descent (SVGD). We demonstrate the 
efficacy and practicality of this method through 2D synthetic 
and 3D real data examples.   

Introduction 

Full waveform inversion (FWI) was proposed four decades 
ago by pioneers (Lailly, 1983; Tarantola, 1984) with the 
vision that it could one day become the ultimate elegant 
solution to the whole seismic imaging problem. Through 
years of unremitting efforts from the geophysics community, 
this vision is becoming more and more of a reality today. 
Especially in the last decade, we have witnessed tremendous 
breakthroughs in FWI research and practice (Warner and 
Guasch, 2014; Shen et al., 2017; Wang et al., 2019; Liu et 
al., 2023). Nowadays, FWI is undoubtedly established as the 
driving force in seismic velocity model building and 
imaging, routinely generating high-resolution images of the 
Earth’s subsurface that cannot be matched by any other 
technique. 

These advancements in FWI also enable more serious 
discussions on FWI uncertainty analysis, as we believe such 
discussions might be less meaningful if there is not a good 
velocity model or image to analyze in the first place. 
Bayesian inference provides a solid framework for us to 
quantify FWI uncertainties by updating our a priori 
knowledge with new information from the data and 
constructing the posterior probability density function (PDF) 
through Bayes’ theorem. Nonetheless, quantifying FWI 
uncertainty remains a daunting task due to the highly non-
linear nature and large dimensions of the FWI problem, as 
well as the high cost of wave simulations. Various efforts 
have gone into tackling the challenges posed by FWI 

uncertainty. One family of such efforts makes a Gaussian 
approximation to the posterior PDF around the maximum a 
posteriori (MAP) model and tries to directly probe the 
structure of the posterior variance by analyzing the Hessian 
of the FWI misfit (Zhu et al., 2016; Zhai et al., 2022). While 
the Gaussian assumption may be generally acceptable, 
evaluating the Hessian of FWI is still computationally 
prohibitive. Further simplifications are often made to 
approximate the Hessian, e.g., via randomized singular value 
decomposition (SVD). These approximations could 
potentially undermine the reliability of the estimated 
posterior PDF and the FWI uncertainty. Another family of 
efforts follows the common practice of evaluating a target 
distribution by sampling the probability space with Markov 
chain Monte Carlo (MCMC) (Brooks et al., 2011). Various 
flavors of MCMC methods have been explored to test their 
applicability in FWI uncertainty analysis (e.g., Ray et al., 
2017; Gebraad et al., 2020). Despite its remarkable success 
in the broad statistics discipline, MCMC is not immune to 
the notorious curse of dimensionality, especially when the 
problem’s dimension approaches the industrial FWI level. 
To obtain any sensible uncertainty results through MCMC, 
at least thousands, if not millions, of samples are needed, 
which is plainly impractical. 

In recent years, variational inference (VI) (Blei et al., 2017) 
has emerged as a powerful alternative to MCMC in 
approximating posterior PDFs. While it does not guarantee 
convergence to the exact posterior as MCMC does, VI 
provides an analytical approximation to the posterior, and 
often at a reduced computational cost, making it especially 
attractive for FWI uncertainty analysis. Stein variational 
gradient descent (SVGD) (Liu and Wang, 2016) is a specific 
type of VI algorithm that uses the particle update approach 
to iteratively move a group of particles (or samples) towards 
the target distribution, and it has shown to be effective and 
practical in large-scale FWI uncertainty analysis (Zhang et 
al., 2023).  As mentioned earlier, one important factor in 
obtaining more meaningful FWI uncertainty through 
affordable algorithms such as SVGD is to perform the 
analysis on top of a good FWI model. Therefore, the FWI 
results we can achieve today offer us a great opportunity to 
carry out SVGD uncertainty analysis in field data projects. 

In the following sections, we will describe our method and 
workflow and demonstrate their effectiveness through 
synthetic and field data examples. 

Theory and Method 

Bayesian inference is a statistical technique that allows us to 
update our beliefs about a model based on new evidence or 
data. It is based on Bayes' theorem, which describes the 
probability of a model given observed data as 
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FWI uncertainty analysis with SVGD 

                     𝜋𝜋(𝑚𝑚) ≡ 𝑝𝑝(𝑚𝑚|𝑑𝑑) = 𝑝𝑝�𝑑𝑑�𝑚𝑚�∗𝑝𝑝(𝑚𝑚)
𝑝𝑝(𝑑𝑑) ,                   (1) 

where 𝜋𝜋(𝑚𝑚) ≡ 𝑝𝑝(𝑚𝑚|𝑑𝑑) is the posterior probability, 
representing our updated belief about the model 𝑚𝑚  after 
observing the data 𝑑𝑑 ;  𝑝𝑝(𝑚𝑚)  is the prior probability, 
representing our initial knowledge of the model before the 
data; and 𝑝𝑝(𝑑𝑑)  is a normalization factor also commonly 
referred to as the evidence. 𝑝𝑝(𝑑𝑑|𝑚𝑚) is the likelihood, or the 
probability of observing the data given the model. For FWI, 
the likelihood function is essentially the forward problem, 
which is often expressed as 
                    𝑝𝑝(𝑑𝑑|𝑚𝑚) ∝ exp �− ‖𝑑𝑑−𝐹𝐹(𝑚𝑚)‖2

2𝜎𝜎2
�,                      (2) 

where 𝐹𝐹 represents the forward modeling operator, 𝜎𝜎2 is the 
data variance, and a 𝐿𝐿2 norm misfit is assumed here. 

Our objective is to find 𝜋𝜋(𝑚𝑚) for the problem of FWI, based 
on which we can derive uncertainties through basic statistics. 
However, this is not as simple as it seems, mainly for two 
reasons. First, the dimension of FWI model is usually very 
large (in the order of millions), which makes it difficult to 
approximate the posterior using common Monte Carlo 
methods, as a very large number of samples are needed. 
Second, for each sample to be generated, we must evaluate 
the likelihood function, i.e., the forward modeling. Thus, the 
price of sample generation is high due to the cost of wave 
propagation. VI offers a good alternative in this situation as 
it seeks to approximate the posterior by minimizing the 
Kullback-Leibler (KL) divergence between a surrogate 
distribution and the target distribution. Since VI solves the 
problem through optimization, it can avoid the need of 
generating a large number of samples, making it more 
efficient in practice. As a specific type of VI algorithms, 
SVGD is a non-parametric method that represents the 
approximating distribution as a set of particles, or samples, 
that are updated iteratively using a form of functional 
gradient descent. The key idea behind SVGD is to move the 
particles in the direction of the gradient of the KL divergence 
between the true distribution and the approximating 
distribution. We now lay out the details of our uncertainty 
analysis workflow based on SVGD. 

The first step of SVGD is generating initial particles. Here, 
we want to reiterate a point we made earlier, that we should 
perform the analysis around a good reference FWI model, 
which is the best FWI result that can be obtained with the 
data. This “around a local optimum” philosophy not only 
makes our uncertainty result more meaningful but also helps 
the SVGD convergence and reduces cost. Starting from this 
reference model, we then add random perturbations to it to 
construct the initial particles. The random perturbations are 
generated using Gaussian random fields (GRF) with the 
Matern covariance kernel (Rasmussen and Williams, 2006):  

 𝐶𝐶(𝑥𝑥, 𝑥𝑥′) =  𝜎𝜎2  2
1−𝜈𝜈

𝛤𝛤(𝜈𝜈)  �√2𝜈𝜈 �|𝑥𝑥 − 𝑥𝑥′|�
𝜌𝜌

�
𝜈𝜈
𝐾𝐾𝜈𝜈 �√2𝜈𝜈 �|𝑥𝑥 − 𝑥𝑥′|�

𝜌𝜌
�,  (3) 

where 𝜎𝜎2  is the variance, 𝜌𝜌  is the length scale, ν is a 
smoothness parameter, 𝛤𝛤 is the gamma function, 𝐾𝐾𝜈𝜈  is the 
modified Bessel function of the second kind of order ν, and 
‖𝑥𝑥 − 𝑥𝑥′‖ is the Euclidean distance between the two input 
vectors 𝑥𝑥 and 𝑥𝑥′. Figure 1 shows four example realizations 
of GRF generated from (3) with ν = 1.5.  

 
Figure 1: Four examples of GRF perturbations generated according 
to the Matern covariance kernel. 

After we have generated a set of 𝑁𝑁 initial particles 
{𝑚𝑚𝑖𝑖: 𝑖𝑖 = 1~𝑁𝑁}, we update them iteratively according to the 
SVGD algorithm: 
𝑚𝑚𝑖𝑖
𝑙𝑙+1 = 𝑚𝑚𝑖𝑖

𝑙𝑙 + 𝜖𝜖𝑙𝑙 ∗ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢),    (4) 
and 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1

𝑁𝑁
∑ 𝑘𝑘(𝑚𝑚𝑗𝑗

𝑙𝑙 ,𝑚𝑚𝑖𝑖
𝑙𝑙)∇𝑚𝑚𝑗𝑗

𝑙𝑙 log𝜋𝜋(𝑚𝑚𝑗𝑗
𝑙𝑙)𝑁𝑁

𝑗𝑗=1 ,         (5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1
𝑁𝑁
∑ ∇𝑚𝑚𝑗𝑗

𝑙𝑙𝑘𝑘(𝑚𝑚𝑗𝑗
𝑙𝑙 ,𝑚𝑚𝑖𝑖

𝑙𝑙)𝑁𝑁
𝑗𝑗=1 ,                          (6) 

where 𝜖𝜖𝑙𝑙 is the step size at the 𝑙𝑙-th iteration, and 𝑘𝑘(𝑚𝑚,𝑚𝑚′) is 
the kernel function from the reproducing kernel Hilbert 
space (RKHS). Here, we deliberately separate the particle 
update into two parts, because they each have nice intuitive 
interpretations that would help our understanding of the 
dynamics of SVGD, as well as facilitate later discussions. 
The Part1 update is mainly driven by the gradient of the 
posterior; therefore, it acts as a converging force that steers 
all particles towards high probability regions. On the other 
hand, the Part2 update behaves as a repulsive force that 
pushes particles away from each other so that they won’t 
collapse to the same point. A good balance between Part1 
and Part2 updates is essential for the particles to eventually 
converge to a distribution that approximates the target 
distribution well. Computationally, evaluating the Part1 
update for each particle 𝑗𝑗 is almost equivalent to computing 
one FWI gradient, which is the main cost for the algorithm. 

A commonly chosen family of functions to be used as 
kernels are the radial basis function (RBF) kernels, which 
satisfy the requirements of being positive definite and 
continuously differentiable:  
                      𝑘𝑘(𝑚𝑚,𝑚𝑚′) = exp �− ‖𝑚𝑚−𝑚𝑚′‖2

ℎ2
�,                      (7) 

where ℎ is an important parameter usually referred to as the 
bandwidth. The bandwidth ℎ plays a crucial role in properly 
balancing the strengths of Part1 and Part2 updates and 
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FWI uncertainty analysis with SVGD 

therefore should be chosen carefully. We follow the heuristic 
choice of the median trick that is proven effective in various 
applications: 
                   ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑗𝑗� ∶  𝑖𝑖 ≠ 𝑗𝑗�.                (8) 
Besides being an important parameter in SVGD, ℎ can also 
serve as a convenient and useful QC parameter telling us 
how the particles move as a group, as we will see shortly. 

Once we run the SVGD algorithm until convergence, we can 
easily compute certain statistics from the samples, such as 
the mean and the standard deviation. We use the standard 
deviation as a quantification of the velocity model 
uncertainty. In addition to velocity uncertainty, we are also 
interested in image depth uncertainty in practice. The bridge 
from the velocity model to the seismic image is any kind of 
migration procedure. In principle, we could run Kirchhoff or 
RTM migration on all the final particles to obtain N volumes 
of image, but that would be costly as well as unnecessary. 
We might only be focusing on a few target events so a simple 
map-migration on those target horizons would suffice to 
generate the depth uncertainties we desire. 

 
Figure 2: Synthetic test on the Marmousi model. (a) Reference FWI 
model. (b) An example initial particle. (c) GRF perturbation of the 
example initial particle. (d) Example particle at convergence. (e) 
Difference between d and a. (f) ℎ-curve QC; ℎ has arbitrary unit. 

Examples 

We first validate our method with a 2D synthetic test on the 
Marmousi model. The synthetic data is generated by a fixed-
spread acquisition with a shot spacing of 100 m and a 
receiver spacing of 50 m. A ricker wavelet peaked at 10 Hz 
is used. Fifty initial particles are generated based on the 
reference FWI model (Figure 2a). One such initial particle is 
shown as an example in Figure 2b, together with its GRF 
perturbation (Figure 2c). The uncertainty analysis is run at 6 
Hz since higher frequency FWI will not have further impact 
on the kinematics, and the L2 cost function is used. We run 
50 SVGD iterations until the particles appear to converge. 
The same example particle at convergence is shown in 
Figure 2d, and its difference against the reference FWI 

model in Figure 2e. We can see that in the central region 
where data constraint is good, the particle closely matches 
the reference model, while in poorly illuminated areas at the 
edges the difference remains relatively large, as one should 
expect. Nevertheless, perfect convergence to the reference 
model is not anticipated even in the good illumination area 
because the Part2 update as a repulsive force will try to 
maintain a reasonable diversity among all the particles. 

Next, we further examine how the bandwidth parameter ℎ 
evolves with iterations (Figure 2f) for a better visualization 
of the collective behavior of the particles. Three sets of tests 
are run independently: with Part1 update only (red curve), 
with Part2 update only (blue curve), and with the full SVGD 
update (black curve). These ℎ-curves clearly illustrate the 
converging and repulsive forces of the two update parts, as 
well as the balanced dynamics between them. 

 
Figure 3: Uncertainty quantification for the Marmousi test. (a) 
Standard deviation of the initial particles. (b) Standard deviation of 
the final particles. (c) Target horizons with uncertainty bounds 
computed from map-migration. (d-e) Zoom-ins of the target 
horizons. 
With the final particles produced by SVGD, we compute the 
standard deviation of them to quantify the velocity 
uncertainty and map-migrate target horizons with them to 
assess depth uncertainties associated with those horizons. 
Figures 3a-b show the standard deviations for the initial and 
final particles, from which we can see that the velocity 
uncertainty is much reduced in well illuminated areas thanks 
to the new information provided by data. In contrast, our 
knowledge about the regions with insufficient constraints 
remains highly uncertain. Figure 3c shows two target 
horizons together with their uncertainty bounds computed 
from map-migration. Because we are using only a small 
number of particles for SVGD, the uncertainty is likely 
underestimated. To compensate for this underestimation, we 
choose the 2-standard-deviation (2𝜎𝜎 ) convention for our 
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FWI uncertainty analysis with SVGD 

horizons’ upper and lower bounds, which represents a 95% 
confidence level based on the particles used. From the zoom-
ins (Figures 3d-e) of the target horizons, we see that the left 
horizon has relatively smaller uncertainty compared to the 
right horizon, which agrees with the velocity uncertainty 
map in Figure 3b. 

 
Figure 4: Test on the Herschel OBN data set. (a) Reference FWI 
model. (b) h-curve QC. (c) Standard deviation of the initial particles. 
(d) Standard deviation of the final particles. The white spaces in (d) 
are due to model clipping during FWI. 
Next, we apply our uncertainty analysis to a field data 
example: the Herschel OBN data set from the GOM. The 
geology of the data area features a big salt dome rising from 
deep (Figure 4a). This data set contains about 900 nodes with 
a node spacing of 400 × 400 m and a shot spacing of 50 m. 
A 5-Hz production FWI model is used as the reference 
model for initial particle generation. We carry out our 
uncertainty analysis with the FWI engine also at 5 Hz, and 
the Time-lag cost function (Zhang et al., 2018) is used for 
this real data study. The SVGD algorithm is executed with 

30 particles up to 50 iterations. Figure 4b shows the ℎ-curve 
QC, from which we can see overall convergence is reached. 
The velocity uncertainties for initial and final particles are 
shown in Figures 4c-d. Once again, we observe that the 
uncertainty level is much reduced in the well illuminated 
regions, thanks to the good constraints from the OBN data.   

Lastly, we look at the depth uncertainties on a couple of 
target horizons (Figure 5). Here, we again follow the 2𝜎𝜎 
convention in computing the horizon uncertainty bounds. 
The zoom-in sections of these horizons (Figures 5b-c) tell us 
that the depth uncertainty of the shallow horizon is 
significantly smaller than that of the deeper horizon, which 
is in line with our intuition as the shallow event is better 
illuminated by data and bears a simpler overburden sediment 
structure. Such depth uncertainty analysis is straightforward 
and relatively quick once we have obtained the final 
particles, making it easily applicable to as many target 
horizons as we like.  

Conclusions 

We presented a plausible and practical method for FWI 
uncertainty analysis based on the Stein variational gradient 
descent algorithm. The validity and effectiveness of this 
method were demonstrated by both synthetic and field data 
examples. This method provides us an affordable pathway to 
obtain meaningful uncertainty information on today’s FWI 
results. We believe these uncertainty results could play 
valuable roles in assisting E&P activities such as accessing 
reservoir levels and de-risking drilling operations. 
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 Figure 5: Depth uncertainty quantification for the Herschel OBN data set. (a) Target horizons with uncertainty bounds 
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