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tion. The outcome of this effort was a set of 20 equally probable 
realisations, generated within a 300 ms vertical time window, 
covering an area of approximately 180 km².

This study focused on the productive reservoirs in the upper 
interval of the Pozo D-129 Formation in the Chulengo field which 
was discovered in 2020 through the drilling of an exploratory 
well with an initial production of 275,000 m³/day of gas. To date, 

Introduction
A comprehensive seismic reservoir characterisation study was 
conducted in a gas field in Argentina, utilising geostatistical AVA 
seismic inversion to generate input for reliable static and dynamic 
model simulation. The study encompassed a range of disciplines, 
including petrophysics, rock physics modelling and geostatistical 
AVA seismic inversion, followed by effective porosity co-simula-
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Abstract
A comprehensive seismic reservoir characterisation study was conducted in a gas field in Argentina, utilising 
geostatistical AVA seismic inversion to generate input for reliable static and dynamic model simulation. The study 
encompassed a range of disciplines, including petrophysics, rock physics modelling and geostatistical AVA seismic 
inversion, followed by effective porosity co-simulation.
The key advantage of the geostatistical inversion method lies in its ability to integrate all available data, i.e. wells, 
seismic, and geological knowledge, resulting in outcomes that honour all input and produce reliable results.
A notable aspect of this study was the use of 3D prior probabilities models for geostatistical inversion which proved to 
be crucial for better characterisation of litho-facies across the area, outperforming the 1D approach.
The results of the geostatistical inversion, combined with the conceptual depositional model and previous seismic 
attributes study, showed significant consistency, increasing confidence in the outcomes of the geostatistical inversion.
The results of this study will be used to build static models of the field, enabling estimation of the in-place gas 
volume and its associated uncertainty. These models will also serve as input for dynamic simulations for the future 
development of this field.
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Figure 1 Location map showing the area of study: 
Chulengo field, Cerro Dragón area, Golfo San Jorge 
Basin, Argentina.
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A simplified stratigraphic column of the study area is shown 
in Figure 2. The Pozo D-129 Formation serves as both the prima-
ry source rock in this sedimentary basin and the reservoir rock of 
this study. Specifically, the target reservoirs are situated within 
the upper section of the Pozo D-129 Formation, as highlighted 
in Figure 2. These reservoirs consist of tuffaceous sandstones 
deposited by the vertical aggradation of gravitational processes 
that transported sediments from the lake platform to the foot of 
the slope thus forming lake fans during the Early Cretaceous 
period (López Angriman et al. 2014). The conceptual depositional 
model of the upper section of the Pozo D-129 Formation is 
depicted in Figure 3, where the Koro area is associated with the 

a total of five wells have been drilled, with a cumulative gas 
production of 415,174,000 m³ from 945,000,000 m³ of original 
gas in place (OGIP) (Canocini et al. 2023). This concession, 
operated by Pan American Energy (PAE) with a 100 % interest, 
is located in the Cerro Dragón area of the Golfo San Jorge Basin 
in the Chubut province of Argentina (Figure 1).

The Golfo San Jorge Basin is an intracratonic basin whose 
main axis has a predominantly west-east direction. It is limited 
to the north by the North Patagonian Massif, to the south by the 
Deseado Massif, to the west by the Andes Mountain range and 
to the east along the continental margin of the Atlantic Ocean 
(Figure 1) (Cohen et al., 2022).

Figure 2 Stratigraphic column of the Cerro Dragón 
area. The target reservoirs are located within the 
upper section of the Pozo D-129 Formation (red 
rectangle).

Figure 3 Conceptual depositional model of the upper 
section of the Pozo D-129 Formation, (modified after 
Brown and Fisher, 1977).
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Methods
The scope of work included petrophysics, rock physics model-
ling and generation of litho-facies probability and elastic prop-
erty volumes through geostatistical AVA seismic inversion. This 
was followed by computation of effective porosity volumes 
through co-simulation. The general workflow is summarised in 
Figure 5.

As the first stage of this study, petrophysics and rock physics 
modelling was conducted with ten wells. Five of these wells 
were in the Chulengo area, two in the Koro area and the other 
three wells were near the study area. First, a comprehensive log 
revision was performed which included editing and conditioning 
where required. Rock-physics modelled well logs were used later 
for deterministic and geostatistical inversions.

Integrated multi-disciplinary teams from Pan American Ener-
gy (PAE) and Viridien worked interactively to produce a petro-

lake platform, the Chulengo area with lake fans and the slope 
representing the limit between the two areas.

The slope line, schematically represented in the conceptual 
depositional model (Figure 3), can reliably be interpreted using 
seismic attributes such as the instantaneous phase (Figure 4). In 
Figure 4, the white polygon shows the study area, and the black 
line depicts the interpreted slope line that clearly delimits zones 
with contrasting phases: the Koro area to the north-west of the 
slope line and the Chulengo area to the south-east of the line 
(Zarpellón, 2010).

The instantaneous phase map shown in Figure 4 suggests 
that this attribute is capable of differentiating depositional 
environments in the Pozo D-129 formation, showing instan-
taneous phase of around +/-180 degrees for platform deposits 
(Koro area) and around zero degrees for fan deposits (Chulengo  
area).

Figure 4 Instantaneous phase attribute map for the 
upper section of the Pozo D-129 Formation. The white 
polygon shows the study area, and the black line 
depicts the interpreted slope line.

Figure 5 General workflow for the present study.
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Building on the results of the petrophysical evaluation, three 
lithofacies were determined based on effective porosity (PHIE) 
and water saturation (SW) cut-off, as shown in Table 1.

The results of petrophysical analysis in the upper interval of 
the Pozo D-129 Formation in one well of the Chulengo area are 
shown in Figure 6.

The overall good agreement observed between the pay 
litho-facies, tested intervals and total gas curves (Figure  6) 
suggested that the petrophysical interpretation was robust for the 
Pozo D-129 Formation.

A rock physics model provides the link between a rock’s 
petrophysical and elastic properties. A grain-supported rock phys-
ics model for consolidated sand was used to model elastic logs. 
The main inputs for the model are fluid and mineral properties, 
petrophysical properties, such as porosity and water saturation, 
and the theoretical values for shear modulus, compressional 

physical and rock physics model that characterises the rock in 
terms of reservoir properties and elastic response simultaneously.

The petrophysical interpretation included clay, quartz and 
tuff volumes, effective and total porosity as well as water 
saturation. These results were calibrated using additional 
information, such as rotary side-wall core, magnetic resonance, 
tested intervals, and total gas curves. The rotary side-wall core 
data came from a well in the Chulengo area. The magnetic 
resonance interpretation was available in six wells in total, three 
of which were in the Chulengo area, two in the Koro area and 
one well near the study area. Furthermore, the water saturation 
curve was calibrated with tested intervals and a curve of total 
gas provided for all wells.

The complex mineral composition was generated from the 
response of several logs considering a multi-mineral approach 
which applies inverse statistical methods to a matrix containing 
curve responses and uncertainty values for formation constituents.

Porosities were calculated from the density log and weighted 
matrix density. Water saturation was estimated using Archie’s 
model with the estimated effective porosity, a brine salinity of 
9862 ppm of NaCl @ 91°C, a cementation exponent (m) of 2, 
a saturation exponent (n) of 2.1 and a tortuosity factor (a) of 1. 
Effective porosity was calculated by using the total porosity and 
shale volume, as PHIE = PHIT *(1-VSH).

Figure 6 Petrophysical interpretation in one well of 
the Chulengo area.

Lithofacies Cut-offs

Pay PHIE >8% and SW <65%

Reservoir PHIE >8%

Non Reservoir PHIE <8%

Table 1 Definition of lithofacies based on their cut-offs.
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that honour all input data. Geostatistical inversion simultaneously 
generates several highly detailed equi-probable solutions (reali-
sations) of elastic properties and lithofacies probabilities. These 
realisations exceed seismic vertical resolution. Additionally, 
by having several realisations it is possible to understand the 
range of uncertainty and associated geological risk. Several 
examples regarding the geostatistical inversion technique have 
been published in the literature which illustrate its benefits over 
deterministic methods, emphasising the importance of facies in 
the process and showing its successful application on synthetic 
and real data (Sams et al., 2011; Sams and Saussus, 2012; and 
Filippova et al., 2011).

Figure 9 illustrates the main differences between the results 
of the deterministic and geostatistical inversions. First, the deter-
ministic inversion provides a prediction at seismic resolution, 
whereas the geostatistical inversion yields a much higher vertical 
resolution extracted from well data through a geostatistical model. 
Another difference is that the deterministic inversion generates a 
single ‘optimum’ solution while the geostatistical inversion 
produces several equi-probable solutions (20 realisations in this 
study). The number of realisations was chosen to obtain sensible 
statistics while balancing computing resources available and 
running times. This means that an uncertainty analysis can be 
performed based on the geostatistical inversion results but not 
on the deterministic inversion solution. A single realisation from 
the geostatistical inversion is shown in Figure 9. The third main 
difference comes from the match between the inversion result and 
measured well logs. The geostatistical inversion is constrained by 
the well data, which means that all realisations perfectly match 
the well logs. This is not the case for the deterministic inversion 
where variations from measured logs can be observed at the 
various well locations.

As shown in Figure 9, geostatistical inversion exceeds verti-
cal seismic resolution which yields to successful characterisation 
of the thin reservoirs of Pozo D-129 Formation.

The final stage of the study was co-simulation of effective 
porosity. Co-simulation is a stochastic approach that generates 
several realisations of rock properties (effective porosity in this 
case) from geostatistical inversion. The co-simulation performed 
in this study used the relationship between P-impedance, Vp/
Vs, density, and effective porosity from well logs to create 
Probability Density Functions (PDFs), as shown in Figure 10. 
The pay lithofacies is characterised by lower P-impedance, 
lower Vp/Vs, lower density, and higher effective porosity than 
the other two lithofacies (reservoir and non-reservoir). The pay 
lithofacies can be differentiated from the other two (reservoir and 

modulus, and density for each mineral. Measured elastic logs 
(density, P-sonic and S-sonic) of good quality were used as a 
reference to calibrate the model.

Modelled P-impedance and Vp/Vs logs coloured by lithofa-
cies (left) and effective porosity (right) are shown in Figure  7, 
where all ten wells were considered within the Pozo D-129 For-
mation. The pay lithofacies response corresponds to the lowest 
P-impedance and Vp/Vs (left) which is also associated with the 
highest effective porosity (right).

The petrophysical and rock physics model, which character-
ises the rock in terms of reservoir properties and elastic response, 
was consistent and played an essential role in the integration of 
geostatistical inversion and co-simulation.

In parallel, seismic conditioning was performed to increase 
the signal-to-noise ratio of the seismic data. This conditioning 
was first applied in the pre-stack domain and then in the post-
stack domain. The post-stack conditioning is explained later in 
this article.

The processing steps applied to pre-stack CDP gathers were: 
Trim statics, radon de-multiple and COV de-noise. One gather 
example before and after conditioning is shown in Figure 8.

Pre-stack seismic conditioning produced high-quality data 
that was used as input for both deterministic and geostatistical 
inversions.

Deterministic AVA inversion, followed by probabilistic litho-
facies classification, was also performed as part of the study but 
they are outside the scope of this article. The main benefit of 
deterministic inversion for the geostatistical inversion was its 
ability to quantify the signal-to-noise ratio for each seismic angle 
stack and across the study area.

Geostatistical inversion was the core component to achieve 
the goal of this study. This is a probabilistic method that integrates 
well logs, seismic and other geologic inputs to generate outcomes 

Figure 7 Modelled elastic cross plots with all ten wells 
in the Pozo D-129 Formation, colour-coded based on 
litho-facies (left) and effective porosity (right).

Figure 8 Pre-stack CDP gather before (a) and after (b) conditioning in the time 
window of interest.
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across angles. To address this, amplitude normalisation was applied 
to the seismic angle stacks. This was achieved through computation 
of 3D scale factors for each angle stack independently. Figure 12 
shows a section with the AVO gradient attribute computed from 
seismic angle stacks before and after post-stack conditioning. 
Before conditioning, a significant lateral variation in the energy 
of some reflectors can be observed. For instance, within the target 
interval highlighted by a red ellipse, the energy level appears 
dimmed compared to the areas on both sides. After conditioning, 
the AVO gradient energy is more balanced across the section. All 
in all, post-stack seismic conditioning improved the quality of the 
data used as input to the deterministic and geostatistical inversions.

The last challenge was the low seismic signal-to-noise ratio 
for some intervals as evidenced by a poor match in some well-to-

non-reservoir) even though some overlap between them is still 
present. In particular the Vp/Vs property seems to be the most 
effective discriminator.

Challenges
Several challenges had to be overcome during the course of this 
study. The first was the structurally complex fault systems which 
represented a real challenge for seismic imaging, seismic velocity 
and AVA compliance (the first two were not part of this case 
study). The most significant faults (15 in total) were incorporated 
into a stratigraphic/structural model used to support both the 
deterministic and geostatistical inversion (Figure 11).

The second challenge lay in the fact that seismic amplitudes 
were strongly unbalanced laterally and were not fully consistent 

Figure 9 Comparison of a NW-SE profile extracted 
from the P-impedance, Vp/Vs, and lithofacies 
determined from (left) deterministic, and (right) 
geostatistical inversion. A single realisation out of the 
20 computed for geostatistical inversion is shown.

Figure 10 Crossplots between elastic properties and 
effective porosity exhibiting relationships, with the 
cluster points colour-coded with lithofacies. The PDFs 
are also included at the top of each column. The well 
log data plotted are from the petrophysics and rock 
physics model.
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Results
Pay probability (posterior probability) is computed following 
Bayesian inference which is part of the geostatistical inversion 
method. Here, two approaches of ‘prior’ probability were com-
pared: 1D versus 3D (Figure  14). In both cases, 140 vertical 
micro-layers were defined with an average thickness of 0.5 ms. 
As defined during the petrophysics analysis, three lithofacies 
were used: pay, reservoir and non-reservoir. The sum of each 
lithofacies probability equals 100%. As it can be observed in 
Figure 14, overall probabilities for non-reservoir lithofacies were 
by far higher than the other two, for both 1D and 3D approaches. 
Notably, the overall probabilities in the 1D approach were 
higher for pay than for the reservoir lithofacies, while in the 
3D approach, the general probabilities were the lowest for pay 
lithofacies. This observation suggested that the general posterior 
pay probability might be lower with the 3D approach compared 
with the 1D approach.

To create the 3D prior probability models, we followed a 
three-step process. Firstly, we clustered available wells into three 
distinct areas: Chulengo (five wells), Koro (two wells), and a 
southwestern region outside the study area (two wells). Next, we 
computed 1D prior probabilities for each area and micro-layer 
using the available stratigraphic grid and litho-facies definitions 
at wells. We then defined three pseudo-wells, assigning each the 
corresponding 1D profiles, and located them at the midpoint of 
the wells in each area. Finally, we used the stratigraphic grid 
to interpolate the 1D prior probabilities of the pseudo wells for 

seismic ties. Figure 13 shows the well-to-seismic tie displaying 
the AVO traces for one well in the Chulengo area. Correlation 
is variable both vertically and across angles (laterally). In this 
display two different intervals are highlighted. The blue rectangle 
highlights a relatively thick vertical window with very low 
seismic-synthetics cross-correlation (blue area). This window 
coincides with the Mina del Carmen Formation which was 
outside the scope of the geostatistical inversion even though it 
lies immediately above the target reservoirs of the Pozo D-129 
Formation. The low cross-correlation in the Mina del Carmen 
Formation may be partly attributed to small impedance contrasts, 
resulting from the widespread presence of tuff throughout the 
interval. In contrast, the red rectangle shows an area where seis-
mic-synthetics cross-correlation is high (yellow/orange colours) 
at this well location. The target reservoirs are located within this 
interval.

Also, some of the challenges faced during this study were 
related to seismic limitations. These limitations were attributed 
to several factors, including sparse acquisition survey geom-
etries, aliased noise affecting near offset/angles, limited far 
offset/angles and significant topographic and weathering layer 
variability.

Finally, with the continuous advancement of seismic process-
ing technologies, the current seismic dataset could benefit from 
the application of more advanced algorithms to further improve 
the seismic (and velocity field) quality and, as a result, the quality 
of the inversion products.

Figure 11 3D view illustrating the complex fault 
system within the study area: 15 faults are displayed 
along with the horizon for top of the Pozo-D129 
Formation.

Figure 12 AVO gradient before (a) and after (b) post-
stack conditioning. The red ellipse highlights an area 
where reflectors were enhanced after conditioning.
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probability was overestimated according to fluid production 
data from a blind well located in the NW (Koro) area. On 
the other hand, the 3D approach produced a more realistic 
estimation of pay probability in general. This comparison also 
suggested that the 1D approach was simplistic to properly 
account for the lateral geological variations present in the study  
area.

each litho-facies and micro-layer. Global kriging was employed 
as the interpolation method, with a variogram range of 50 km. 
Additionally, it is worth noting that the slope line interpreted 
from the separate attributes study was omitted in the construction 
of this model.

Pay probability maps following these two approaches 
are shown in Figure 15. By using the 1D approach, pay 

Figure 13 Well-to-seismic tie in AVO mode display in the Chulengo area.

Figure 14 Prior probabilities: 1D (left) and 3D (right)
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consistency was observed. This provided added confidence in the 
outcomes from the geostatistical inversion.

An arbitrary section through five producing wells (Chulengo 
area) showing part of the geostatistical inversion results and 
co-simulated effective porosity is shown in Figure 17. A single 
realisation is shown on the left-hand side and the most probable 
or average properties based on all 20 realisations are displayed 
on the right-hand side. As expected, the pay lithofacies correlates 
well with the highest effective porosity values. Additionally, 
the single realisation shows more details than the mean/most 
probable properties.

Figure 18 shows several average pay probability maps within 
the reservoir window around the location of five producing wells in 
the Chulengo area. The high probability zone delineates well this 
producing field. Also, lateral variations can be observed between 
the three random realisations. Statistical analysis of these differ-

3D prior proportions for geostatistical inversion proved to be 
crucial for better characterisation of lithofacies between the Chu-
lengo area (south-east) and the Koro area (north-west) compared 
with the 1D approach.

Final geostatistical inversion was generated by following the 
approach with 3D prior probabilities. One realisation is shown in 
Figure 16 along with the slope line interpreted from the separate 
seismic attributes study of the area. The slope line delimits the 
Koro area (NW) and the Chulengo area (SE). All maps show a 
level of consistency, in particular pay probability and pay thick-
ness, showing similar lateral trends. Also, in Figure 16, it was 
observed that in general pay thickness and pay probability were 
consistently higher where P-impedance and Vp/Vs were lower.

When comparing the geostatistical inversion maps shown 
in Figure 16 with the conceptual depositional model (Figure 3) 
and the previous seismic attribute study (Figure  4) significant 

Figure 15 Pay probability maps from 1D (left) and  
3D (right) prior probabilities.

Figure 16 Maps within the reservoir window for realisation 20 and the slope line interpreted from seismic attributes as shown in Figure 4.
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porosity zone also delineates well this producing field. Again, 
lateral variations can be observed between the three ran-
dom realisations, which were used to quantify the level of 
uncertainty (standard deviation, not shown in this article). 
Notably, it was also observed that the five wells of the Chu-

ences made it possible to quantify the level of uncertainty (stand-
ard deviation, not shown in this article) associated with the pay  
probability.

Similarly, Figure 19 shows several average effective 
porosity maps covering the same area. The high effective 

Figure 17 Arbitrary section through five producing 
wells in the Chulengo area showing part of the 
geostatistical inversion results and co-simulated 
effective porosity. A single realisation (left) and mean/
most probable out of 20 realisations (right).

Figure 18 Average pay probability maps in the 
Chulengo area within the reservoir window (black dots 
correspond to five producing wells).

Figure 19 Average effective porosity maps in the 
Chulengo area within the reservoir window (white dots 
correspond to five producing wells).
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lengo area were not located in zones with the highest effective  
porosity.

The lithofacies probability and effective porosity volumes 
will be used to build static models of the field that will allow 
estimation of the in-place gas volume along with its associated 
uncertainty. This data will be used to dynamically simulate the 
future development of this field.

Finally, regular interaction between the multi-disciplinary 
teams of Pan American Energy and Viridien was instrumental 
in ensuring the high quality of this integrated seismic reservoir 
characterisation study.

Conclusions
First, the primary objective of generating reliable input for 
building static models to conduct dynamic simulations of the 
Chulengo field has been successfully achieved through geosta-
tistical inversion.

Second, the use of 3D prior probabilities for geostatistical 
inversion has proven crucial for better characterisation of litho-fa-
cies between the Chulengo area (south-east) and the Koro area 
(north-west), outperforming the 1D approach.

Third, the results of the geostatistical inversion, conceptual 
depositional model, and previous seismic attribute study, have 
shown significant consistency, increasing confidence in the 
outcomes of the geostatistical inversion.

Finally, the results of this study will be used to build static 
models of the field, enabling estimation of the in-place gas volume 
and its associated uncertainty. These models will also serve as input 
for dynamic simulations for the future development of this field.
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